精英家教网 > 高中数学 > 题目详情

已知等差数列的前项和为
(1)求数列的通项公式;
(2)若,求数列的前100项和.

(1);(2).

解析试题分析:(1)由,求解方程组可求出;利用等差数列的通项公式即可求出
(2)由,利用裂项求和即可求解.
试题解析:(1)由,解得,所以.
(2)
从而有:.
故数列的前100项和为.
考点:数列的求和;数列的概念及简单表示法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知是等差数列,满足,数列满足,且是等比数列.
(1)求数列的通项公式;
(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,数列的前n项和为,点在曲线,且.
(1)求数列的通项公式;
(2)数列的前n项和为,且满足,问:当为何值时,数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
(1)求d,an
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为,且和1的等差中项,等差数列满足
(1)求数列,的通项公式;
(2)设,数列的前n项和为,若对一切恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在等比数列中,.
(1)求
(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足,.
(1)若为递增数列,且成等差数列,求的值;
(2)若,且是递增数列,是递减数列,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均不相等的等差数列{an}的前n项和为Sn,若S3=15,且a3+1为a1+1和a7+1的等比中项.
(1)求数列{an}的通项公式与前n项和Sn
(2)设Tn为数列{}的前n项和,问是否存在常数m,使Tn=m[],若存在,求m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在无穷数列中,,对于任意,都有. 设, 记使得成立的的最大值为.
(1)设数列为1,3,5,7,,写出的值;
(2)若为等比数列,且,求的值;
(3)若为等差数列,求出所有可能的数列.

查看答案和解析>>

同步练习册答案