分析 利用正弦函数的周期性求得ω,再利用正弦函数的单调性求得f(x)的单调递增区间.
解答 解:∵函数f(x)=2sin(ωx-$\frac{π}{6}$)-1最小正周期是$\frac{2π}{ω}$=π,∴ω=2,则函数f(x)=2sin(2x-$\frac{π}{6}$)-1.
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,可得函数的增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z,
故答案为:[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
点评 本题主要考查正弦函数的周期性和单调性,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | 0或-1 | B. | 0或-2 | C. | 0或1 | D. | 0或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{7}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 5+2$\sqrt{2}$ | B. | 4+2$\sqrt{2}$ | C. | $\sqrt{7}$ | D. | 3+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (2,+∞) | B. | (2,5] | C. | (1,2) | D. | (1,5] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com