精英家教网 > 高中数学 > 题目详情
3.若a,b是方程x2-30x+100=0的两个实根,则lga+lgb=2.

分析 根据与系数的关系以及对数的运算性质即可求出.

解答 解:∵a,b是方程x2-30x+100=0的两个实根,
∴ab=100,
∴lga+lgb=lgab=lg100=2,
故答案为:2.

点评 本题考查了根据与系数的关系以及对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设A={x|x2-3x+2≤0},B={x|x2-ax+1≤0},且B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.计算:$\underset{lim}{n→∞}$$\sum_{i=1}^{n}$$\frac{1}{n}$•${(\frac{i}{n})}^{2}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知方程sin2x+cosx+a=0在区间[-$\frac{π}{3}$,0]上有实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知{an}是一个无穷等比数列,公比为q.将数列{an}中的前k项去掉,剩余各项组成一个新的数列,这个新数列是等比数列吗?如果是,它的首项与公比分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设集合M={x|-3≤x<7},N={x|2x+k≤0},M∩N≠∅,则k的取值范围为k≤6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四边形ABCD中,BC=6,AD=CD=4,∠A+∠C=π,记△BCD,△ABD的面积分别为S1,S2,求S1-S2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A、B、C的对边分别为a,b,c,已知a2tanB=b2tanA.
(1)试判断△ABC的形状;
(2)若sin2C=sin2A+sin2B+$\frac{2}{3}$sinAsinB,求cos(2A-$\frac{π}{6}$)的值;
(3)是否存在△ABC,使cos2A+cos2B+cos2C=1,若存在,求出所有满足条件的A值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x2-2x+1+alnx有两个极值点x1,x2,且x1<x2,则实数a的取值范围为(  )
A.$({-∞,\frac{1}{2}})$B.$({0,\frac{1}{2}})$C.$({\frac{1}{2},+∞})$D.$({0,\frac{1}{2}}]$

查看答案和解析>>

同步练习册答案