精英家教网 > 高中数学 > 题目详情
(2011•普宁市模拟)某国家代表队要从6名短跑运动员中选4人参加亚运会4×100m接力,如果其中甲不能跑第一棒,乙不能跑第四棒,共有
252
252
种参赛方法.
分析:先做出所有的情况六人中取四人参加的种数,减去甲、乙两人中至少有一人不排在恰当位置的种数,这样就重复剪掉了两个人同时不合题意的结果数,再加上多减去的部分,得到结果.
解答:解:由题意知本题是一个排列组合及简单计数问题,
从六人中取四人参加的种数为A64
去掉甲、乙两人中至少有一人不排在恰当位置的有C21A53种,
因前后把甲、乙两人都不在恰当位置的种数A42减去了两次.
故共有A64-C21A53+A42=252种
故答案为:252
点评:本题考查排列组合及简单的计数问题,对于带有限制条件的排列、组合计数原理综合题,一般用分类讨论或间接法两种方法处理,本题解题的关键是减去两个人分别不合题意的结果以后,注意多减去的数据要加上,本题是一个易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•普宁市模拟)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n)=
80
n+1
.若水晶产品的销售价格不变,第n次投入后的年利润为f(n)万元.
(1)求出f(n)的表达式;
(2)问从今年算起第几年利润最高?最高利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•普宁市模拟)若一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•普宁市模拟)如图,四棱锥P-ABCD的底面ABCD为菱形,PD⊥平面ABCD,PD=AD=2,∠BAD=60°,E、F分别为BC、PA的中点.
(I)求证:ED⊥平面PAD;
(Ⅱ)求三棱锥P-DEF的体积;
(Ⅲ)求平面PAD与平面PBC所成的锐二面角大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•普宁市模拟)已知数列{am}是首项为a,公差为b的等差数列,{bn}是首项为b,公比为a的等比数列,且满足a1<b1<a2<b2<a3,其中a、b、m、n∈N*.
(Ⅰ)求a的值;
(Ⅱ)若数列{1+am}与数列{bn}有公共项,将所有公共项按原顺序排列后构成一个新数列{cn},求数列{cn}的通项公式;
(Ⅲ)记(Ⅱ)中数列{cn}的前项之和为Sn,求证:
9
S1S2
+
9
S2S3
+
9
S3S4
+…+
9
SnSn+1
19
42
(n≥3)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•普宁市模拟)下列命题中,正确的是(  )

查看答案和解析>>

同步练习册答案