精英家教网 > 高中数学 > 题目详情
2.如图,在底半径为2,母线长为4的圆锥中内接一个高为$\sqrt{3}$的圆柱,圆柱的表面积(2+2$\sqrt{3}$)π

分析 由已知中底面半径为2母线长为4的圆锥中内接一个高为$\sqrt{3}$的圆柱,我们可计算出圆柱的底面半径,代入圆柱表面积公式,即可得到答案

解答 解:设圆锥的底面半径为R,圆柱的底面半径为r,表面积为S,
作出几何体的轴截面如下图所示:

则BC=2,AC=4,AB=$\sqrt{{AC}^{2}-{BC}^{2}}$=2$\sqrt{3}$.
△ABC∽△ADE,
故$\frac{DE}{BC}=\frac{AD}{AB}$,即$\frac{r}{2}=\frac{\sqrt{3}}{2\sqrt{3}}$
∴r=1,
∴S=2π,S=2$\sqrt{3}$π,
∴S=(2+2$\sqrt{3}$)π.
故答案为:(2+2$\sqrt{3}$)π

点评 本题考查的知识点是圆柱的表面积,其中根据已知条件,求出圆柱的底面半径,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.函数y=sin(ωx+φ)(ω>0且|φ<|$\frac{π}{2}$)在区间[$\frac{1}{12}$,$\frac{7}{12}$]上单调递减,且函数值从1减小到-1,那么此函数图象与y轴交点的纵坐标为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{x-1}{1+x}$.
(1)求证:函数f(x)在区间(-1,+∞)上是增加的;
(2)设g(x)=f(2x),求证:函数g(x)是奇函数;
(3)在(2)的前提下,若g(x-1)+g(3-2x)<0,求实数x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x2-2|x|-3,(x∈[-4,4]).
(1)求证:f(x)是偶函数;
(2)画出函数f(x)的图象,并指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是单调递增还是单调递减;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{a}{a-1}$(ax-a-x)(a>0且a≠1).
(1)判断函数f(x)的奇偶性和单调性(单调性不需证明);
(2)若对于任意x∈R,f(x-λ)+f(x2-λ)>0恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个几何体的正视图是长为3、宽为1的矩形,侧视图是腰长为2的等腰三角形,则该几何的表面积为12+8$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+c,(-4≤x<0)}\\{-x+3,(x≥0)}\end{array}\right.$,若f(-4)=f(0),f(-2)=-1.
(1)求函数f(x)的解析式;
(2)画出函数f(x)的图象,并指出函数的定义域、值域、单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,若tanA=2tanB,a2-b2=$\frac{1}{3}$c,则c=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,边a,b,c分别为角A,B,C的对边,若a=$\sqrt{3}$,∠A=$\frac{π}{3}$,则当b取最大值时,△ABC的面积为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案