精英家教网 > 高中数学 > 题目详情

【题目】已知是公差不为零的等差数列,满足,且成等比数列.

(1)求数列的通项公式;

(2)设数列满足,求数列的前项和.

【答案】(1);(2)

【解析】试题分析:1)设等差数列 的公差为,由a3=7,且成等比数列.可得,解之得即可得出数列的通项公式;

2)由(1)得,则,由裂项相消法可求数列的前项和.

试题解析:(1)设数列的公差为,且由题意得

,解得

所以数列的通项公式.

(2)由(1)得

.

型】解答
束】
18

【题目】四棱锥的底面为直角梯形,为正三角形.

(1)点为棱上一点,若平面,求实数的值;

(2)求点B到平面SAD的距离.

【答案】(1);(2)

【解析】试题分析:(1)由平面,可证,进而证得四边形为平行四边形,根据,可得

(2)利用等体积法可求点到平面的距离.

试题解析:((1)因为平面SDM,

平面ABCD,

平面SDM 平面ABCD=DM,

所以

因为,所以四边形BCDM为平行四边形,又,所以M为AB的中点.

因为

.

(2)因为

所以平面

又因为平面

所以平面平面

平面平面

在平面内过点直线于点,则平面

中,

因为,所以

又由题知

所以

由已知求得,所以

连接BD,则

又求得的面积为

所以由点B 到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】通过随机询问100名性别不同的大学生是否爱好踢毽子,得到如下的列联表:

随机变量经计算,统计量K2的观测值k0≈4.762,参照附表,得到的正确结论是(  )

A. 在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”

B. 在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”

C. 有97.5%以上的把握认为“爱好该项运动与性别有关”

D. 有97.5%以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项的和记为Sn.如果a4=-12a8=-4

(1)求数列{an}的通项公式;

(2)Sn的最小值及其相应的n的值;

(3)从数列{an}中依次取出a1a2a4a8,构成一个新的数列{bn},求{bn}的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,tanA=tanB=

1)求C的大小;

2)若△ABC的最小边长为,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C+=1ab0)经过点(1),且焦距为2

1)求椭圆C方程;

2)椭圆C的左,右焦点分别为F1F2,过点F2的直线l与椭圆C交于AB两点,求△F2AB面积S的最大值并求出相应直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义在上的可导函数,其导函数为,且有,则不等式 的解集为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生活造成严重影响.在党和政府强有力的抗疫领导下,我国控制住疫情后,一方面防止境外疫情输入,另一方面逐步复工复产,减轻经济下降对企业和民众带来的损失.为降低疫情影响,某厂家拟在2020年举行某产品的促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用万元()满足为常数),如果不搞促销活动,则该产品的年销售量只能是2万件.已知生产该产品的固定投入为8万元,每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(此处每件产品年平均成本按元来计算)

1)将2020年该产品的利润万元表示为年促销费用万元的函数;

2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项都是正数的等比数列{}Sn为前n项和,且S10=10S30=70,那么S40=______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,函数.

1)求的最小正周期及图象的对称轴方程;

2)若先将的图象上每个点纵坐标不变,横坐标变为原来的2倍,然后再向左平移个单位长度得到函数的图象,求函数在区间内的所有零点之和.

查看答案和解析>>

同步练习册答案