精英家教网 > 高中数学 > 题目详情
若函数f(x)为R上的奇函数,且在定义域上单调递减,又f(sinx-1)>-f(sinx),x∈[0,π],则x的取值范围是(  )
A、(
π
3
3
)
B、[0,
π
3
]∪(
3
,π]
C、[0,
π
6
)∪(
6
,π]
D、(
π
6
6
)
分析:本题可根据函数奇函数的性质与函数的单调性将抽象不等式转化为三角不等式,解三角不等式求出x的取值范围,即f(sinx-1)>-f(sinx),f(sinx-1)>f(-sinx),再由函数递减性质得sinx-1<-sinx,解出其在[0,π]上的解集即可选出正确答案.
解答:解:∵函数f(x)为R上的奇函数,又f(sinx-1)>-f(sinx),
∴f(sinx-1)>-f(sinx),
∴f(sinx-1)>f(-sinx),
又在定义域上单调递减,
∴sinx-1<-sinx,
∴sinx<
1
2

又0,π],
∴x∈[0,
π
6
)∪(
6
,π]

故选C.
点评:本题考查正弦函数的单调性,解答本题关键是熟练掌握正弦函数的单调性及函数奇偶性的性质,本题求解两个重点,一个是由单调性将抽象不等式转化为三角不等式,一个是解三角不等式,每一步的求解都要用到一个知识点,知识性较强,有一定的综合性,题后要认真总结一下解题规律,即转化的依据与转化的方式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列命题:
①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;
②设p、q为简单命题,若“p∨q”为假命题,则“¬p∧¬q为真命题”;
③若p(x)=ax2+2x+1>0,则“?x∈R,p(x)是真命题”的充要条件为 a>1;
④若函数f(x)为R上的奇函数,当x≥0,f(x)=3x+3x+a,则f(-2)=-14;
⑤不等式
x+5
(x-1)2
≥2
的解集是[-
1
2
,3]

其中所有正确的说法序号是
①②③④
①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4x2-kx+8
(Ⅰ)若函数f(x)为R上的偶函数,求实数k的值;
(Ⅱ)用函数单调性的定义证明:当k=8时,函数f(x)在[1,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=kx,(k≠0)且满足f(x+1)•f(x)=x2+x,函数g(x)=ax,(a>0且a≠1).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数f(x)为R上的增函数,h(x)=
f(x)+1
f(x)-1
(f(x)≠1)
,问是否存在实数m使得h(x)的定义域和值域都为[m,m+1]?若存在,求出m的值;若不存在,请说明理由;
(Ⅲ)已知关于x的方程g(2x+1)=f(x+1)•f(x)恰有一实数解为x0,且x0∈(
1
4
1
2
)
求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(
x2+1
+bx)
(a>0且a≠1),给出如下判断:
①函数f(x)为R上的偶函数的充要条件是b=0;
②若a=
1
2
,b=-1
,则函数f(x)为R上的减函数;
③当a>1时,函数为R上的增函数;
④若函数f(x)为R上的奇函数,且为R上的增函数,则必有0<a<1,b=-1或a>1,b=1.
其中所有正确判断的序号是
①④
①④

查看答案和解析>>

同步练习册答案