精英家教网 > 高中数学 > 题目详情
16.如图是一个算法流程图,则输出的n值为10.

分析 先要通读程序框图,看到程序中有循环结构,然后代入初值,看是否进入循环体,是就执行循环体,写清每次循环的结果;不是就退出循环,看清要输出的是何值.

解答 解:执行循环体前,n=2,
第一次执行循环体后,n=4,log34<2,不满足退出循环的条件,
第二次执行循环体后,n=6,log36<2,不满足退出循环的条件,
第三次执行循环体后,n=8,log38<2,不满足退出循环的条件,
第四次执行循环体后,n=10,log310>2,满足退出循环的条件,
故输出的n为:10.
故答案为:10

点评 本题考查程序框图.要掌握常见的当型、直到型循环结构;以及会判断条件结构,并得到条件结构的结果;在已知框图的条件下,可以得到框图的结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知AB、DE为圆O的直径,CD⊥AB于N,N为OB的中点,EB与CD相交于点M,切线EF与DC的延长线交于点F.
(1)求证:EF=FM;
(2)若圆O的半径为1,求EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线y=x在第一象限上有一点Q到$P(0\;,\;\sqrt{2})$的距离为$\sqrt{2}$,则点Q的坐标为(  )
A.(0,0)B.(1,1)C.$(\sqrt{2\;},\;\sqrt{2})$D.(2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{2}{x-1}$,(x∈[2,6])
(1)利用定义证明函数f(x),x∈[2,6]是减函数
(2)求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线的极坐标方程为ρcos(θ+$\frac{π}{3}$)=2,则点A(2,$\frac{π}{6}$)到直线的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若点 P(1,m)为抛物线y2=2px(p>0)上一点,F是抛物线的焦点,若|PF|=2,则m=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设△ABC的内角A,B,C所对边的长分别为a,b,c,则下列命题正确的个数是①②③(写出所有正确命题的编号).
①若sinA>sinB>sinC则a>b>c;②若ab>c2,则C<$\frac{π}{3}$
③若a+b>2c,则C<$\frac{π}{3}$;④若(a2+b2)c2≤2a2b2,则C>$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知关于x的不等式|x-2|≤a(a>0)恰有5个整数解,则实数a的取值范围是[2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{lo{g}_{2}(x+1),x>1}\end{array}\right.$且方程f2(x)-af(x)+$\frac{3}{2}$=0恰有四个不同实根,则实数a的取值范围是(  )
A.(-∞,-$\sqrt{6}$)∪($\sqrt{6}$,+∞)B.($\sqrt{6}$,$\frac{5}{2}$)C.(2,4)D.($\sqrt{6}$,$\frac{11}{4}$]

查看答案和解析>>

同步练习册答案