精英家教网 > 高中数学 > 题目详情

【题目】在锐角△ABC中,BC=1,B=2A,则 的值等于 , AC的取值范围为

【答案】2;(
【解析】解:第一空:根据正弦定理得: =
因为B=2A,化简得 = =2;
第二空:因为△ABC是锐角三角形,C为锐角,
所以 ,由B=2A得到A+2A> 且2A= ,从而解得:
于是 ,由(1)的结论得2cosA=AC,故
故答案为:2,(
(1)根据正弦定理和B=2A及二倍角的正弦公式化简可得值;(2)由(1)得到AC=2cosA,要求AC的范围,只需找出2cosA的范围即可,根据锐角△ABC和B=2A求出A的范围,然后根据余弦函数的增减性得到cosA的范围即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1= ,an= (n≥2,n∈N*),设bn=
(1)求证:数列{bn}是等差数列;
(2)设Sn=|b1|+|b2|+…+|bn|(n∈N*),求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国电子商务蓬勃发. 2016年“618”期间,某购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统. 评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务满意的交易为80次.

(Ⅰ) 根据已知条件完成下面列联表,并回答能有99%的把握认为“网购者对商品满意与服务满意之间有关系”

对服务满意

对服务不满意

合计

对商品满意

80

对商品不满意

合计

200

(Ⅱ) 若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务满意的次数为随机变量,求的分布列和数学期望.

附:(其中为样本容量

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知BC边上的高所在直线的方程为x﹣2y+1=0,∠A平分线所在直线的方程为y=0,若点B的坐标为(1,2), (Ⅰ)求直线BC的方程;
(Ⅱ)求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn . 若对任意正整数n,总存在正整数m,使得Sn=am , 则称{an}是“H数列”.
(1)若数列{an}的前n项和Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0.若{an}是“H数列”,求d的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=ax2﹣(a+1)x+1
(1)解关于x的不等式f(x)>0;
(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有这样一则问题:“今有良马与弩马发长安,至齐,齐去长安三千里,良马初日行一百九十三里,日增一十三里;弩马初日行九十七里,日减半里,良马先至齐,复还迎弩马.”则现有如下说法:

①弩马第九日走了九十三里路;

②良马前五日共走了一千零九十五里路;

③良马和弩马相遇时,良马走了二十一日.

则以上说法错误的个数是( )个

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=acosB+bsinA.
(1)求A;
(2)若a=2,b=c,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100110)[110120)[120130)[130140)[140150]分别加以统计,得到如图所示的频率分布直方图.

1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;

2)若规定分数不小于130分的学生为数学尖子生,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为数学尖子生与性别有关

附:

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案