精英家教网 > 高中数学 > 题目详情
11.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.
(Ⅰ)求证:平面BDGH∥平面AEF;
(Ⅱ)求二面角H-BD-C的大小.

分析 (Ⅰ)证明GH∥平面AEF.OH∥平面AEF.利用平面平行的判定定理证明平面BDGH∥平面AEF.
(Ⅱ)取EF的中点N,连接ON,以O为原点,OB,OC,ON所在直线分别为x轴,y轴,z轴,如图建立空间直角坐标系.求出相关点的坐标,求出平面BDH的法向量,平面BCD的法向量,利用向量的数量积求解二面角H-BD-C的余弦函数值,然后求出大小.

解答 (Ⅰ)证明:在△CEF中,因为G,H分别是CE,CF的中点,
所以GH∥EF,又因为GH?平面AEF,EF?平面AEF,
所以GH∥平面AEF.…(2分)
设AC∩BD=O,连接OH,
因为ABCD为菱形,所以O为AC中点
在△ACF中,因为OA=OC,CH=HF,
所以OH∥AF,
又因为OH?平面AEF,AF?平面AEF,
所以OH∥平面AEF.
又因为OH∩GH=H,OH,GH?平面BDGH,
所以平面BDGH∥平面AEF.…(6分)

(Ⅱ)解:取EF的中点N,连接ON,因为四边形BDEF是矩形,O,N分别为BD,EF的中点,所以ON∥ED,因为平面BDEF⊥平面ABCD,所以ED⊥平面ABCD,
所以ON⊥平面ABCD,因为ABCD为菱形,所以AC⊥BD,得OB,OC,ON两两垂直.
所以以O为原点,OB,OC,ON所在直线分别为x轴,y轴,z轴,如图建立空间直角坐标系.
因为底面ABCD是边长为2的菱形,∠BAD=60°,BF=3,所以B(1,0,0),D(-1,0,0),E(-1,0,3),F(1,0,3),$C(0,\sqrt{3},0)$,$H(\frac{1}{2},\frac{{\sqrt{3}}}{2},\frac{3}{2})$.所以$\overrightarrow{BH}=(-\frac{1}{2},\frac{{\sqrt{3}}}{2},\frac{3}{2})$,$\overrightarrow{DB}=(2,0,0)$.设平面BDH的法向量为$\overrightarrow n=(x,y,z)$,则$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{BH}=0\\ \overrightarrow n•\overrightarrow{DB}=0\end{array}\right.⇒\left\{\begin{array}{l}-x+\sqrt{3}y+3z=0\\ 2x=0\end{array}\right.$.令z=1,得$\overrightarrow n=(0,-\sqrt{3},1)$.…(9分)
由ED⊥平面ABCD,得平面BCD的法向量为$\overrightarrow{DE}=(0,0,3)$,则$cos<\overrightarrow n,\overrightarrow{DE}>=\frac{{\overrightarrow n•\overrightarrow{DE}}}{{|{\overrightarrow n}||{\overrightarrow{DE}}|}}=\frac{{0×0+(-\sqrt{3})×0+1×3}}{2×3}=\frac{1}{2}$
所以二面角H-BD-C的大小为60°.…(12分)
注:用传统法找二面角并求解酌情给分.

点评 本题考查直线与平面垂直的判定定理以及性质定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知焦点在x轴上的椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0),F1,F2是它的两个焦点,若椭圆上的点到焦点距离的最大值与最小值的差为2.
(1)求椭圆的标准方程;
(2)经过右焦点F2的直线l与椭圆相交于A、B两点,且$\overrightarrow{{F}_{2}A}$+2$\overrightarrow{{F}_{2}B}$=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.欧阳修《煤炭翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.
可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为1.5cm圆,中间有边长为0.5cm的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为(  )
A.$\frac{4}{9π}$B.$\frac{9}{4π}$C.$\frac{4π}{9}$D.$\frac{9π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=2x3+3ax2+3bx+8在x=1及x=2处取得极值.
(1)求a、b的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x|2a-x|+2x,a∈R.
(1)若a=0,判断函数y=f(x)的奇偶性,并加以证明;
(2)若函数f(x)在R上是增函数,求实数a的取值范围;
(3)若存在实数a∈[-2,2],使得关于x的方程f(x)-tf(2a)=0有三个不相等的实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知直三棱柱ABC-A1B1C1的各棱长都是4,E是BC的中点,点F在侧棱CC1上,且CF=1,求证:EF⊥A1C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若F1,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,O为坐标原点,P在双曲线左支上(点P异于左顶点),M在右准线上,且满足$\overrightarrow{{F}_{1}O}$=$\overrightarrow{PM}$.
(1)若$\frac{\overrightarrow{OP}•\overrightarrow{OM}}{|\overrightarrow{OP}||\overrightarrow{OM}|}$=$\frac{\overrightarrow{O{F}_{1}}•\overrightarrow{OP}}{|\overrightarrow{O{F}_{1}}||\overrightarrow{OP}|}$,求此双曲线的离心率;
(2)在(1)的条件下,此双曲线又过点N(2,$\sqrt{3}$),求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若向量$\overrightarrow{a,}\overrightarrow{b}$满足$|\overrightarrow{a}|$=$\sqrt{3}$,$|\overrightarrow{b}|$=4,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为150°,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$2\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,若B=45°,c=3$\sqrt{2}$,b=2$\sqrt{3}$,求角A.

查看答案和解析>>

同步练习册答案