精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=ex-e-x-3x(x≥0)的导数的值域为[-1,+∞).

分析 先求导,再根据基本不等式即可求出导数的值域.

解答 解:f(x)=ex-e-x-3x,
∴f′(x)=ex+e-x-3≥2$\sqrt{{e}^{x}{e}^{-x}}$-3=2-3=-1,当且仅当x=0时取等号,
∴导数的值域为[-1,+∞).
故答案为:[-1,+∞).

点评 本题考查了导数的运算法则和基本不等式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.证明:若两条平行直线都和第三条直线相交,则这三条直线共面.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,则满足不等式f(1)<f(lg$\frac{x}{10}$)的x的取值范围是(0,1)∪(100,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|x=m+n$\sqrt{2}$,m∈Z,N∈Z}
(1)证明:任何整数都是A的元素.
(2)设x1,x2∈A,求证:x1•x2∈A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.过$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的左焦点F1作斜率为$\frac{\sqrt{3}}{3}$直线交椭圆于A,B两点,若|AF1|=7|BF1|,则e=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知以点A(2,-3)为圆心,半径长等于5的圆O,则点M(5,-7)与圆O的位置关系是(  )
A.在圆内B.在圆上C.在圆外D.无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在约束条件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{y+x≤t}\\{y+2x≤4}\end{array}\right.$下,当2≤t≤4时,则函数z=3x+2y的最大值的范围是[6,8].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)是偶函数,在(0,+∞)上单调递增,则下列不等式成立的是(  )
A.f(-3)<f(-1)<f(2)B.f(-1)<f(2)<f(-3)C.f(2)<f(-3)<f(-1)D.f(2)<f(-1)<f(-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,在△ABC中,$\overrightarrow{AD}=\frac{2}{3}\overrightarrow{AC}$,$\overrightarrow{BP}=\frac{1}{3}\overrightarrow{BD}$,若$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,则$\frac{λ}{μ}$的值为(  )
A.-3B.3C.2D.-2

查看答案和解析>>

同步练习册答案