精英家教网 > 高中数学 > 题目详情
(理)已知数列{an}满足a1=2,前n项和为Snan+1=
pan+n-1(n为奇数)
-an-2n(n为偶数)

(1)若数列{bn}满足bn=a2n+a2n+1(n≥1),试求数列{bn}前3项的和T3
(2)若数列{cn}满足cn=a2n,试判断{cn}是否为等比数列,并说明理由;
(3)当p=
1
2
时,对任意n∈N*,不等式S2n+1≤log
1
2
(x2+3x)
都成立,求x的取值范围.
分析:(1)由已知bn=a2n+a2n+1(n≥1),结合 an+1=
pan+n-1(n为奇数)
-an-2n(n为偶数)
可得数列{bn}是一个等差数列,求出通项后,利用求和公式可求T3
(2)当p=
1
2
时,易得数列{Cn}是一个等比数列,但是当p≠
1
2
时,数列{cn}不为等比数列,根据等比数列的定义,代入易验证结论
(3)由(1)(2)的结论,利用等差数列的求和公式可求S2n+1,结合{S2n+1}单调性可求最大值,而S2n+1≤log
1
2
(x2+3x)
都成立,即S2n+1最大值≤log
1
2
(x2+3x)
,解不等式可求x
解答:解:(1)据题意得bn=a2n+a2n+1=a2n-a2n-2×2n=-4n,
所以{bn}成等差数列,故Tn=
-4-4n
2
•n
=-2n(n+1)(4分)
∴T3=-24
(2)(理)当p=
1
2
时,数列{cn}成等比数列;
p≠
1
2
时,数列{cn}不为等比数列
理由如下:因为cn+1=a2n+2=pa2n+1+2n=p(-a2n-4n)+2n=-pcn-4pn+2n,
所以
cn+1
cn
=-p+
2n(1-2p)
cn

故当p=
1
2
时,数列{cn}是首项为1,公比为-
1
2
等比数列;
p≠
1
2
时,数列{cn}不成等比数列
(3)bn=a2n+a2n+1=-4n,所以{bn}成等差数列
p=
1
2
a2n=cn=(-
1
2
)n-1

因为S2n+1=a1+(a2+a3)+(a4+a5)+…+(a2n+a2n+1)S2n+1=a1+b1+b2+…+bn=2+(-4-8-12-…-4n)
=-2n2-2n+2(n≥1)
又S2n+3-S2n+1=-4n-4<0所以{S2n+1}单调递减
当n=1时,S3最大为-2所以-2≤log
1
2
(x2+3x)

x2+3x>0
x2+3x≤4
⇒x∈[-4,-3)∪(0,1]
点评:本题考查的知识点是等比关系的确定,数列的求和,其中熟练掌握等差数列、等比数列的定义,能熟练的判断一个数列是否为等差(比)数列是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)已知数列{an}满足a1=1,an=
12
an-1+1(n≥2),
(1)求证:数列{an-2}是等比数列,并求通项an
(2)求{an}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知数列{an},Sn是其前n项和,Sn=1-an(n∈N*),
(1)求数列{an}的通项公式;
(2)令数列{bn}的前n项和为Tn,bn=(n+1)an,求Tn
(3)设cn=
3an
(2-an)(1-an)
,数列{cn}的前n项和Rn,且Rnλ+
m
λ
(λ>0,m>0)
恒成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知数列{an}是等差数列,且a1=-2,a1+a2+a3=-12.
(1)求数列{an}的通项公式;
(2)若b1=0,bn+1=7bn+6,n∈N*,求数列{an(bn+1)}的前n项和Tn的公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知数列{an}前n项和Sn=-ban+1-
1
(1+b)n
其中b是与n无关的常数,且0<b<1,若
limSn
n→∞
存在,则
limSn=
n→∞
1
1

查看答案和解析>>

同步练习册答案