精英家教网 > 高中数学 > 题目详情

【题目】某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如图:
(1)记事件A为:“从这批小龙虾中任取一只,重量不超过35g的小龙虾”,求P(A)的估计值;
(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;
(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:

等级

一等品

二等品

三等品

重量(g)

[5,25)

[25,45)

[45,55]

按分层抽样抽取10只,再随机抽取3只品尝,记X为抽到二等品的数量,求抽到二级品的期望.

【答案】
(1)解:由于40只小龙虾中重量不超过35g的小龙虾有6+10+12=28(只)

所以


(2)解:从统计图中可以估计每只小龙虾的重量

= (克)

所以购进100千克,小龙虾的数量约有100000÷28.5≈3509(只)


(3)解:由题意知抽取一等品、二等品、三等品分别为4只、5只、1只,X=0,1,2,3

则可得

所以


【解析】(1)由于40只小龙虾中重量不超过35g的小龙虾有6+10+12(只),利用古典概率计算公式即可得出.(2)求出其平均数,可得从统计图中可以估计每只小龙虾的重量.(3)由题意知抽取一等品、二等品、三等品分别为4只、5只、1只,X=0,1,2,3.利用超几何分布列的概率 的计算公式即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学在上学路上要经过A、B、C三个带有红绿灯的路口.已知他在A、B、C三个路口遇到红灯的概率依次是 ,遇到红灯时停留的时间依次是40秒、20秒、80秒,且在各路口是否遇到红灯是相互独立的.
(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,
(2)求这名同学在上学路上因遇到红灯停留的总时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a(x+lnx)(a>0),g(x)=x2
(1)若f(x)的图象在x=1处的切线恰好也是g(x)图象的切线.求实数a的值;
(2)对于区间[1,2]上的任意两个不相等的实数x1 , x2且x1<x2 , 都有f(x2)﹣f(x1)<g(x2)﹣g(x1)成立.试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足2an+1=an+an+2+k(n∈N* , k∈R),且a1=2,a3+a5=﹣4.
(1)若k=0,求数列{an}的前n项和Sn
(2)若a4=﹣1,求数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若实数x,y满足的约束条件 ,将一颗骰子投掷两次得到的点数分别为a,b,则函数z=2ax+by在点(2,﹣1)处取得最大值的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P是抛物线x2=4y上的动点,点P在x轴上的射影是Q,点A(8,7),则|PA|+|PQ|的最小值为(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 的离心率为 ,F1 , F2分别是它的左、右焦点,且存在直线l,使F1 , F2关于l的对称点恰好为圆C:x2+y2﹣4mx﹣2my+5m2﹣4=0(m∈R,m≠0)的一条直径的两个端点.
(1)求椭圆E的方程;
(2)设直线l与抛物线y2=2px(p>0)相交于A,B两点,射线F1A,F1B与椭圆E分别相交于点M,N,试探究:是否存在数集D,当且仅当p∈D时,总存在m,使点F1在以线段MN为直径的圆内?若存在,求出数集D;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于直线x=1对称.
(1)求证:f(x)是周期为4的周期函数;
(2)若f(x)= (0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为15°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值为

查看答案和解析>>

同步练习册答案