【题目】某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如图:
(1)记事件A为:“从这批小龙虾中任取一只,重量不超过35g的小龙虾”,求P(A)的估计值;
(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;
(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:
等级 | 一等品 | 二等品 | 三等品 |
重量(g) | [5,25) | [25,45) | [45,55] |
按分层抽样抽取10只,再随机抽取3只品尝,记X为抽到二等品的数量,求抽到二级品的期望.
【答案】
(1)解:由于40只小龙虾中重量不超过35g的小龙虾有6+10+12=28(只)
所以 .
(2)解:从统计图中可以估计每只小龙虾的重量
= (克)
所以购进100千克,小龙虾的数量约有100000÷28.5≈3509(只)
(3)解:由题意知抽取一等品、二等品、三等品分别为4只、5只、1只,X=0,1,2,3
则可得 , ,
,
所以 .
【解析】(1)由于40只小龙虾中重量不超过35g的小龙虾有6+10+12(只),利用古典概率计算公式即可得出.(2)求出其平均数,可得从统计图中可以估计每只小龙虾的重量.(3)由题意知抽取一等品、二等品、三等品分别为4只、5只、1只,X=0,1,2,3.利用超几何分布列的概率 的计算公式即可得出.
科目:高中数学 来源: 题型:
【题目】某同学在上学路上要经过A、B、C三个带有红绿灯的路口.已知他在A、B、C三个路口遇到红灯的概率依次是 、 、 ,遇到红灯时停留的时间依次是40秒、20秒、80秒,且在各路口是否遇到红灯是相互独立的.
(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,
(2)求这名同学在上学路上因遇到红灯停留的总时间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a(x+lnx)(a>0),g(x)=x2 .
(1)若f(x)的图象在x=1处的切线恰好也是g(x)图象的切线.求实数a的值;
(2)对于区间[1,2]上的任意两个不相等的实数x1 , x2且x1<x2 , 都有f(x2)﹣f(x1)<g(x2)﹣g(x1)成立.试求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足2an+1=an+an+2+k(n∈N* , k∈R),且a1=2,a3+a5=﹣4.
(1)若k=0,求数列{an}的前n项和Sn;
(2)若a4=﹣1,求数列{an}的通项公式an .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若实数x,y满足的约束条件 ,将一颗骰子投掷两次得到的点数分别为a,b,则函数z=2ax+by在点(2,﹣1)处取得最大值的概率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: 的离心率为 ,F1 , F2分别是它的左、右焦点,且存在直线l,使F1 , F2关于l的对称点恰好为圆C:x2+y2﹣4mx﹣2my+5m2﹣4=0(m∈R,m≠0)的一条直径的两个端点.
(1)求椭圆E的方程;
(2)设直线l与抛物线y2=2px(p>0)相交于A,B两点,射线F1A,F1B与椭圆E分别相交于点M,N,试探究:是否存在数集D,当且仅当p∈D时,总存在m,使点F1在以线段MN为直径的圆内?若存在,求出数集D;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于直线x=1对称.
(1)求证:f(x)是周期为4的周期函数;
(2)若f(x)= (0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为15°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com