精英家教网 > 高中数学 > 题目详情

【题目】如图所示的几何体,是将高为2、底面半径为1的圆柱沿过旋转轴的平面切开后,将其中一半沿切面向右水平平移后形成的封闭体.分别为的中点,为弧的中点,为弧的中点.

1)求直线与底面所成的角的大小;

2)求异面直线所成的角的大小(结果用反三角函数值表示).

【答案】1 2

【解析】

1)连结,利用线面角的定义找到直线与底面所成的角,利用锐角三角函数中正切的定义求出直线与底面所成的角正切值,最后利用反正切函数表示即可;

2)连结,则,所以或其补角为异面直线所成的角,利用余弦定理可以求出的余弦值,最后求出异面直线所成的角的大小.

解:(1)连结、因为分别为的中点,所以底面,所以是直线与底面所成的角,在中,

2)连结,则

所以或其补角为异面直线所成的角.

中,

因为

所以.

所以,异面直线所成的角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在五棱锥中,侧面底面是边长为2的正三角形,四边形为正方形,,且的重心,是正方形的中心.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数,客户性别等进行统计,整理得到如表:

学时数

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根据上表估计男性客户购买该课程学时数的平均值(同一组中的数据用该组区间的中点值作代表,结果保留小数点后两位);

(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率.

(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视,为“非十分爱好该课程者”.请根据已知条件完成以下列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?

非十分爱好该课程者

十分爱好该课程者

合计

男性

女性

合计

100

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了组建一支业余足球队,在高一年级随机选取50名男生测量身高,发现被测男生的身高全部在之间,将测量结果按如下方式分成六组:第1,第2,第6,如图是按上述分组得到的频率分布直方图,以频率近似概率.

1)若学校要从中选1名男生担任足球队长,求被选取的男生恰好在第5组或第6组的概率;

2)试估计该校高一年级全体男生身高的平均数(同一组中的数据用该组区间的中点值代表)与中位数;

3)现在从第5与第6组男生中选取两名同学担任守门员,求选取的两人中最多有1名男生来自第5组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年“双十一”全网销售额达亿元,相当于全国人均消费元,同比增长,监测参与“双十一”狂欢大促销的家电商平台有天猫、京东、苏宁易购、网易考拉在内的综合性平台,有拼多多等社交电商平台,有敦煌网、速卖通等出口电商平台.某大学学生社团在本校名大一学生中采用男女分层抽样,分别随机调查了若干个男生和个女生的网购消费情况,制作出男生的频率分布表、直方图(部分)和女生的茎叶图如下:

男生直方图

分组(百元)

男生人数

频率

合计

女生茎叶图

(1)请完成频率分布表的三个空格,并估计该校男生网购金额的中位数(单位:元,精确到个位).

(2)若网购为全国人均消费的三倍以上称为“剁手党”,估计该校大一学生中的“剁手党”人数为多少?从抽样数据中网购不足元的同学中随机抽取人发放纪念品,则人都是女生的概率为多少?

(3)用频率估计概率,从全市所有高校大一学生中随机调查人,求其中“剁手党”人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区不同身高的未成年男性的体重平均值如下表:

身高x(cm)

60

70

80

90

100

110

120

130

140

体重y(kg)

6.13

7.90

9.99

12.15

15.02

17.50

20.92

26.86

31.11

已知之间存在很强的线性相关性,

(Ⅰ)据此建立之间的回归方程;

(Ⅱ)若体重超过相同身高男性体重平均值的倍为偏胖,低于倍为偏瘦,那么这个地区一名身高体重为 的在校男生的体重是否正常?

参考数据:

附:对于一组数据,其回归直线 中的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面为直角梯形,,且,平面底面的中点,为等边三角形,是棱上的一点,设不重合).

1)若平面,求的值;

2)当时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体被一平面所截后剩下几何体的三视图如图所示,则该剩下几何体的体积为( )

A. 10B. 15C. 20D. 25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,两铁路线垂直相交于站,若已知千米,甲火车从站出发,沿方向以千米小时的速度行驶,同时乙火车从站出发,沿方向,以千米小时的速度行驶,至站即停止前行(甲车扔继续行驶)(两车的车长忽略不计).

1)求甲、乙两车的最近距离(用含的式子表示);

2)若甲、乙两车开始行驶到甲,乙两车相距最近时所用时间为小时,问为何值时最大?

查看答案和解析>>

同步练习册答案