【题目】如图所示的几何体,是将高为2、底面半径为1的圆柱沿过旋转轴的平面切开后,将其中一半沿切面向右水平平移后形成的封闭体.分别为的中点,为弧的中点,为弧的中点.
(1)求直线与底面所成的角的大小;
(2)求异面直线与所成的角的大小(结果用反三角函数值表示).
科目:高中数学 来源: 题型:
【题目】如图所示,在五棱锥中,侧面底面,是边长为2的正三角形,四边形为正方形,,且,是的重心,是正方形的中心.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数,客户性别等进行统计,整理得到如表:
学时数 |
| ||||||
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根据上表估计男性客户购买该课程学时数的平均值(同一组中的数据用该组区间的中点值作代表,结果保留小数点后两位);
(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率.
(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视,为“非十分爱好该课程者”.请根据已知条件完成以下列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?
非十分爱好该课程者 | 十分爱好该课程者 | 合计 | |
男性 | |||
女性 | |||
合计 | 100 |
附:,
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为了组建一支业余足球队,在高一年级随机选取50名男生测量身高,发现被测男生的身高全部在到之间,将测量结果按如下方式分成六组:第1组,第2组,…,第6组,如图是按上述分组得到的频率分布直方图,以频率近似概率.
(1)若学校要从中选1名男生担任足球队长,求被选取的男生恰好在第5组或第6组的概率;
(2)试估计该校高一年级全体男生身高的平均数(同一组中的数据用该组区间的中点值代表)与中位数;
(3)现在从第5与第6组男生中选取两名同学担任守门员,求选取的两人中最多有1名男生来自第5组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年“双十一”全网销售额达亿元,相当于全国人均消费元,同比增长,监测参与“双十一”狂欢大促销的家电商平台有天猫、京东、苏宁易购、网易考拉在内的综合性平台,有拼多多等社交电商平台,有敦煌网、速卖通等出口电商平台.某大学学生社团在本校名大一学生中采用男女分层抽样,分别随机调查了若干个男生和个女生的网购消费情况,制作出男生的频率分布表、直方图(部分)和女生的茎叶图如下:
男生直方图
分组(百元) | 男生人数 | 频率 |
合计 |
女生茎叶图
(1)请完成频率分布表的三个空格,并估计该校男生网购金额的中位数(单位:元,精确到个位).
(2)若网购为全国人均消费的三倍以上称为“剁手党”,估计该校大一学生中的“剁手党”人数为多少?从抽样数据中网购不足元的同学中随机抽取人发放纪念品,则人都是女生的概率为多少?
(3)用频率估计概率,从全市所有高校大一学生中随机调查人,求其中“剁手党”人数的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区不同身高的未成年男性的体重平均值如下表:
身高x(cm) | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 |
体重y(kg) | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 | 17.50 | 20.92 | 26.86 | 31.11 |
已知与之间存在很强的线性相关性,
(Ⅰ)据此建立与之间的回归方程;
(Ⅱ)若体重超过相同身高男性体重平均值的倍为偏胖,低于倍为偏瘦,那么这个地区一名身高体重为 的在校男生的体重是否正常?
参考数据:
附:对于一组数据,其回归直线 中的斜率和截距的最小二乘估计分别为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面为直角梯形,,且,,,平面底面,为的中点,为等边三角形,是棱上的一点,设(与不重合).
(1)若平面,求的值;
(2)当时,求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,两铁路线垂直相交于站,若已知千米,甲火车从站出发,沿方向以千米小时的速度行驶,同时乙火车从站出发,沿方向,以千米小时的速度行驶,至站即停止前行(甲车扔继续行驶)(两车的车长忽略不计).
(1)求甲、乙两车的最近距离(用含的式子表示);
(2)若甲、乙两车开始行驶到甲,乙两车相距最近时所用时间为小时,问为何值时最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com