精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,求函数的单调性;

2)当时,,求函数上的最小值;

3)当时,有两个零点,且,求证:.

【答案】(1)上单调递增(2)(3)证明见解析

【解析】

1)求得函数的导数,结合导数的符号,即可求得函数的单调性;

2)由,求得,分类讨论求得函数的单调性与极值,进而求得函数的最小值,得到答案.

3)由,根据题意,得到

两式相减,,令,得到函数,利用导数求得函数的单调性与最值,即可求解.

1)由题意,函数,则

又∵,∴,∴

上单调递增.

2)由,则

1)当时,

此时图数在区间上单调递减,

∴函数处取得最小值,即

2)当时,令

时,即当

此时函数在区间上单调递减,函数处取得最小值,

综上所得.

3)证明:根据题意,

是函数的两个零点,

.

两式相减,可得,即

,则.

,则.

,则.

又∵,∴恒成立,故,即.

可得,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两台机床同时加工直径为10cm的零件,为了检验零件的质量,从零件中各随机抽取6件测量,测得数据如下(单位:mm):

甲:9910098100100103

乙:9910010299100100.

1)分别计算上述两组数据的平均数和方差

2)根据(1)的计算结果,说明哪一台机床加工的零件更符合要求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求的单调区间;

2)若在上存在一点,使得成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从含有两件正品a1a2和一件次品b13件产品中每次任取1件,

每次取出后不放回,连续取两次.

1)求取出的两件产品中恰有一件次品的概率;

2)如果将每次取出后不放回这一条件换成每次取出后放回,则取出的两件产品中恰有一件次品的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,记为与原点距离等于的全体直线所成的集合.问:是否存在常数,使得对任意的直线,均存在分别过 与椭圆的交点,且有?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,已知菱形的对角线交于点,点为线段的中点,,将三角形沿线段折起到的位置,,如图2所示.

(Ⅰ)证明:平面 平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的椭圆C经过点M(21)N(-).

(1)求椭圆C的标准方程;

(2)经过点M作倾斜角互补的两条直线,分别与椭圆C相交于异于M点的AB两点,求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC在内角ABC的对边分别为abc,已知a=bcosC+csinB.

)求B

)若b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】首届中国国际进口博览会于2018年11月5日至10日在上海的国家会展中心举办.国家展、企业展、经贸论坛、高新产品汇集……首届进博会高点纷呈.一个更加开放和自信的中国,正用实际行动为世界构筑共同发展平台,展现推动全球贸易与合作的中国方案.

某跨国公司带来了高端智能家居产品参展,供购商洽谈采购,并决定大量投放中国市场.已知该产品年固定研发成本30万美元,每生产一台需另投入90美元.设该公司一年内生产该产品万台且全部售完,每万台的销售收入为万美元,

(1)写出年利润(万美元)关于年产量(万台)的函数解析式;(利润=销售收入-成本)

(2)当年产量为多少万台时,该公司获得的利润最大?并求出最大利润.

查看答案和解析>>

同步练习册答案