【题目】已知函数.
(1)当时,求函数在的单调性;
(2)当且时,,求函数在上的最小值;
(3)当时,有两个零点,,且,求证:.
【答案】(1)在上单调递增(2)(3)证明见解析
【解析】
(1)求得函数的导数,结合导数的符号,即可求得函数的单调性;
(2)由,求得,分类讨论求得函数的单调性与极值,进而求得函数的最小值,得到答案.
(3)由,根据题意,得到,,
两式相减,,令,得到函数,利用导数求得函数的单调性与最值,即可求解.
(1)由题意,函数,则,
又∵,∴,,∴,
∴在上单调递增.
(2)由,则,
(1)当时,,,
此时图数在区间上单调递减,
∴函数在处取得最小值,即;
(2)当时,令,
当时,即当,,,
此时函数在区间上单调递减,函数在处取得最小值,
即;
综上所得.
(3)证明:根据题意,,
∵,是函数的两个零点,
∴,.
两式相减,可得,即,
∴,则,.
令,,则.
记,,则.
又∵,∴恒成立,故,即.
可得,∴.
科目:高中数学 来源: 题型:
【题目】甲、乙两台机床同时加工直径为10cm的零件,为了检验零件的质量,从零件中各随机抽取6件测量,测得数据如下(单位:mm):
甲:99,100,98,100,100,103;
乙:99,100,102,99,100,100.
(1)分别计算上述两组数据的平均数和方差
(2)根据(1)的计算结果,说明哪一台机床加工的零件更符合要求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从含有两件正品a1,a2和一件次品b1的3件产品中每次任取1件,
每次取出后不放回,连续取两次.
(1)求取出的两件产品中恰有一件次品的概率;
(2)如果将“每次取出后不放回”这一条件换成“每次取出后放回”,则取出的两件产品中恰有一件次品的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,记为与原点距离等于的全体直线所成的集合.问:是否存在常数,使得对任意的直线,均存在、,、分别过 与椭圆的交点、,且有?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.
(Ⅰ)证明:平面 平面;
(Ⅱ)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的椭圆C经过点M(2,1),N(,-).
(1)求椭圆C的标准方程;
(2)经过点M作倾斜角互补的两条直线,分别与椭圆C相交于异于M点的A,B两点,求直线AB的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】首届中国国际进口博览会于2018年11月5日至10日在上海的国家会展中心举办.国家展、企业展、经贸论坛、高新产品汇集……首届进博会高点纷呈.一个更加开放和自信的中国,正用实际行动为世界构筑共同发展平台,展现推动全球贸易与合作的中国方案.
某跨国公司带来了高端智能家居产品参展,供购商洽谈采购,并决定大量投放中国市场.已知该产品年固定研发成本30万美元,每生产一台需另投入90美元.设该公司一年内生产该产品万台且全部售完,每万台的销售收入为万美元,
(1)写出年利润(万美元)关于年产量(万台)的函数解析式;(利润=销售收入-成本)
(2)当年产量为多少万台时,该公司获得的利润最大?并求出最大利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com