精英家教网 > 高中数学 > 题目详情
若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab的值为(  )
A、
4
3
B、8-4
3
C、1
D、
2
3
分析:将已知的等式展开;利用余弦定理表示出a2+b2-c2求出ab的值.
解答:解:∵(a+b)2-c2=4,
即a2+b2-c2+2ab=4,
由余弦定理得2abcosC+2ab=4,
∵C=60°,
ab=
4
3

故选A.
点评:本题考查三角形中余弦定理的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•宁城县模拟)若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则a+b的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的内角A、B、C满足sinA:sinB:sinC=2:3:3,则cosB(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的内角A、B、C所对的边a、b、c满足(a+b)2-c2=4,且C=60°,则a+b的最小值为
4
3
3
4
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的内角A满足sin2A=-
2
3
,则cosA-sinA=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的内角A、B、C满足6sinA=4sinB=3sinC,则cosB=
 

查看答案和解析>>

同步练习册答案