精英家教网 > 高中数学 > 题目详情
在△ABC中,B=30°,C=45°,c=
6
,则最短边长为(  )
A、1
B、
2
C、
3
D、
6
考点:余弦定理
专题:解三角形
分析:由题意判断得到b为最短边,根据sinB,sinC,以及c的值,利用正弦定理求出b的值即可.
解答: 解:∵在△ABC中,B=30°,C=45°,c=
6

∴B为最小角,即b为最短边,
则由正弦定理
b
sinB
=
c
sinC
得:b=
csinB
sinC
=
6
×
1
2
2
2
=
3

故选:C.
点评:此题考查了正弦定理,三角形的边角关系,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x+1-a
a-x
(x≠a).
(1)证明:函数f(x)在区间(a,+∞)上是增加的;
(2)当x∈[a+
1
2
,a+1]时,求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知x,y都是正实数,比较x3+y3与x2y+xy2的大小;
(2)解不等式ax2-(2a+1)x+2<0,其中a>0,a为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{
1
n(n+1)
}的前n项和为Sn,则S99=(  )
A、
100
99
B、
99
100
C、
100
101
D、
98
99

查看答案和解析>>

科目:高中数学 来源: 题型:

为了得到函数y=cos(2x-
π
6
)的图象,可以将y=sin2x的图象(  )
A、向左平移
π
6
B、向左平移
π
3
C、向右平移
π
6
D、向右平移
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图(1)是反应某公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客两x之间关系的图象.由于目前该条公交线亏损,公司有关人员提出了两种调整的建议,如图(2)(3)的实线(虚线为原参考线)所示.给出下列说法:
①图(2)的建议是:提高成本,并提高票价;
②图(2)的建议是:降低成本,并保持票价不变;
③图(3)的建议是:提高票价,并保持成本不变;
④图(3)的建议是:提高票价,并降低成本.
其中所有说法正确的是(  )
A、①③B、②③C、②④D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x+
3
sinxcosx,x∈R
(1)求函数f(x)的最小正周期;
(2)当函数f(x)取得最大值时,求自变量的集合;
(3)用五点法作出函数f(x)在一个周期内的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(
π
6
-θ)=a(|a|≤1),求cos(
6
+θ)和sin(
3
-θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,x2+x≥2”的否定是(  )
A、?x0∈R,x2+x≤2
B、?x0∈R,x2+x<2
C、?x∈R,x2+x≤2
D、?x∈R,x2+x<2

查看答案和解析>>

同步练习册答案