精英家教网 > 高中数学 > 题目详情

与圆相切,且在两坐标轴上截距相等的直线共有    条.

 

【答案】

4

【解析】本试题主要考查了直线与圆相切的情况,以及截距相等的分类讨论思想的运用。

当所求直线的方程的截距为0时,直线过原点,显然有两条直线满足题意;当截距不为0时,设所求直线的方程为:x+y=a(a≠0),由圆的方程得到:圆心坐标为(0,2),圆的半径为r=1,则圆心到直线的距离d==r=1,即(a-2)2=2,,解得:a=2±,满足题意a的值有2个,所以满足题意的直线有2条.,综上,满足题意的直线有4条.,故答案为4.解决该试题的关键是对于截距是否为零讨论得到。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知线段AB的端点B的坐标是(-1,0),端点A在圆(x-7)2+y2=16上运动,
(1)求线段AB中点M的轨迹方程;
(2)点C(2,a),若过点C且在两坐标轴上截距相等的直线与圆相切,求a的值及切线方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市顺义区高三年级第二次统练文科数学试卷(解析版) 题型:解答题

已知椭圆的离心率为为椭圆的两个焦点,点在椭圆上,且的周长为

(Ⅰ)求椭圆的方程

(Ⅱ)设直线与椭圆相交于两点,若为坐标原点),求证:直线与圆相切.

 

查看答案和解析>>

科目:高中数学 来源:2013届江西省高二下学期第二次月考理科数学试卷(解析版) 题型:解答题

已知AD分别为椭圆E的左顶点与上顶点,椭圆的离心率FF2为椭圆的左、右焦点,点P是线段AD上的任一点,且的最大值为1 .

(1)求椭圆E的方程;

(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点AB,且OAOBO为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由;

(3)设直线l与圆相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆P与圆数学公式相切,且经过点数学公式
(1)试求动圆的圆心P的轨迹C的方程;
(2)设O为坐标原点,圆D:(x-t)2+y2=t2(t>0),若圆D与曲线C交于关于x轴对称的两点A、B(点A的纵坐标大于0),且数学公式,请求出实数t的值;
(3)在(2)的条件下,点D是圆D的圆心,E、F是圆D上的两动点,满足数学公式,点T是曲线C上的动点,试求数学公式的最小值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省无锡市高考数学模拟试卷(1)(解析版) 题型:解答题

已知动圆P与圆相切,且经过点
(1)试求动圆的圆心P的轨迹C的方程;
(2)设O为坐标原点,圆D:(x-t)2+y2=t2(t>0),若圆D与曲线C交于关于x轴对称的两点A、B(点A的纵坐标大于0),且,请求出实数t的值;
(3)在(2)的条件下,点D是圆D的圆心,E、F是圆D上的两动点,满足,点T是曲线C上的动点,试求的最小值.

查看答案和解析>>

同步练习册答案