精英家教网 > 高中数学 > 题目详情
15.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的表面积为(  )
A.(4+4$\sqrt{2}$)πB.(6+4$\sqrt{2}$)πC.(8+4$\sqrt{2}$)πD.(12+4$\sqrt{2}$)π

分析 由三视图知该几何体为圆柱挖去一个圆锥所得的组合体,由三视图求出几何元素的长度,由圆柱、圆锥的表面积公式求出该几何体的表面积.

解答 解:由三视图知几何体为圆柱挖去一个圆锥所得的组合体,
且圆锥与圆柱的底面直径都为4,高为2,
则圆锥的母线长为$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
∴该几何体的表面积S=$π×{2}^{2}+2π×2×2+π×2×2\sqrt{2}$
=(12+4$\sqrt{2}$)π,
故选:D.

点评 本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图,△ABC内接于⊙O,过BC中点D作平行于AC的直线l,l交AB于E,交⊙O于G、F,交⊙O在A点处的切线于P,若PE=3,ED=2,EF=3,则PA的长为(  )
A.$\sqrt{5}$B.$\sqrt{6}$C.$\sqrt{7}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知方程$\widehat{y}$=0.85x-82.71是根据女大学生的身高预报她的体重的回归方程,其中x的单位是cm,$\widehat{y}$的单位是kg,那么针对某个体(160,53)的残差是-0.29.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱猪ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,A1A=AB=2,E为棱AA1的中点.
(1)证明:B1C1⊥CE;
(2)求二面角B1-CE-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.电影《功夫熊猫3》预计在2016年1月29日上映,某地电影院为了了解当地影迷对票价的看法,进行了一次调研,得到了票价x(单位:元)与渴望观影人数y(单位:万人)的结果如表:
 x(单位:元) 30 40 50 60
 y(单位:万人) 4.5 4 3 2.5
(1)若y与x具有较强的相关关系,试分析y与x之间是正相关还是负相关;
(2)请根据如表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)根据(2)中求出的线性回归方程,预测票价定为多少元时,能获得最大票房收入.
参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overrightarrow{x}\overrightarrow{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{x}^{-2}}$,$\overrightarrow{a}$=$\overrightarrow{y}$-$\widehat{b}$$\overrightarrow{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.变量x与变量y之间的一组数据为:
X2345
y2.53m4.5
y与x具有线性相关关系,且其回归直线方程为$\widehat{y}$=bx+1.05,已知x每增加1,则y约增加0.7,则m的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(°C)与该奶茶店的这种饮料销量y(杯),得到如表数据:
日    期1月11日1月12日1月13日1月14日1月15日
平均气温x(℃)91012118
销量y(杯)2325302621
(1)若从这五组数据中随机抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程$\widehaty$=$\widehatb$x+$\widehata$.
(3)若1月份该地区平均气温为12℃,试根据(2)求出的线性回归方程,预测本月共销售该种饮料多少杯?
(参考公式:$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\\{\;}\end{array}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax(lnx-1)(a∈R且a≠0).
(1)求函数y=f(x)的单调递增区间;
(2)当a>0时,设函数g(x)=$\frac{1}{6}$x3-f(x),函数h(x)=g′(x),若h(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.交通管理部门为了解机动车驾驶员(简称驾驶员)对酒驾的了解情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员216人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,24,43.则这四社区驾驶员的总人数N为(  )
A.2160B.1860C.1800D.1440

查看答案和解析>>

同步练习册答案