9£®¸ø³öÏÂÁÐËÄÖÖ˵·¨£¬Ëµ·¨ÕýÈ·µÄÓТ٢ۣ¨ÇëÌîдÐòºÅ£©
¢Ùº¯Êýy=ax£¨a£¾0£¬ÇÒa¡Ù1£©Ó뺯Êýy=logaax£¨a£¾0£¬ÇÒa¡Ù1£©µÄ¶¨ÒåÓòÏàͬ£»
¢Úº¯Êýf£¨x£©=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$ºÍy=$\sqrt{x-1}+\sqrt{1-x}$¶¼ÊǼÈÆæÓÖżµÄº¯Êý£»
¢ÛÒÑÖª¶ÔÈÎÒâµÄ·ÇÁãʵÊýx¶¼ÓÐ$f£¨x£©+2f£¨\frac{1}{x}£©=2x+1$£¬Ôòf£¨2£©=-$\frac{1}{3}$£»
¢Üº¯Êýf£¨x£©ÔÚ£¨a£¬b]ºÍ£¨b£¬c£©É϶¼ÊÇÔöº¯Êý£¬Ôòº¯Êýf£¨x£©ÔÚ£¨a£¬c£©ÉÏÒ»¶¨ÊÇÔöº¯Êý£®

·ÖÎö ¢Ùº¯Êýy=axµÄ¶¨ÒåÓòΪR£¬º¯Êýy=logaax£¨a£¾0£¬ÇÒa¡Ù1£©µÄ¶¨ÒåÓòΪax£¾0£¬x¡ÊR£»
¢Úº¯Êýf£¨x£©=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$µÄ¶¨ÒåÓòΪ{-1£¬1}£¬y=$\sqrt{x-1}+\sqrt{1-x}$µÄ¶¨ÒåÓòΪ{1}²»¹ØÓÚÔ­µã¶Ô³Æ£¬
¢ÛÓÉ$f£¨x£©+2f£¨\frac{1}{x}£©=2x+1$£¬µÃf£¨$\frac{1}{x}$£©+2f£¨x£©=$\frac{2}{x}$+1£¬ÁªÁ¢¿ÉµÃf£¨x£©=$\frac{4}{3x}$$-\frac{2x}{3}$$+\frac{1}{3}$£¬´úÈëÇóÖµ¼´¿É£»
¢Üº¯Êýf£¨x£©ÔÚ£¨a£¬b]ºÍ£¨b£¬c£©É϶¼ÊÇÔöº¯Êý£¬Ö»ÄÜ˵Ã÷º¯ÊýµÄÔöÇø¼äΪ£¨a£¬b]ºÍ£¨b£¬c£©£®

½â´ð ½â£º¢Ùº¯Êýy=axµÄ¶¨ÒåÓòΪR£¬º¯Êýy=logaax£¨a£¾0£¬ÇÒa¡Ù1£©µÄ¶¨ÒåÓòΪax£¾0£¬x¡ÊR£¬¹ÊÕýÈ·£»
¢Úº¯Êýf£¨x£©=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$µÄ¶¨ÒåÓòΪ{-1£¬1}£¬ÇÒf£¨x£©=0£¬ÊǼÈÆæÓÖżµÄº¯Êý£¬y=$\sqrt{x-1}+\sqrt{1-x}$µÄ¶¨ÒåÓòΪ{1}²»¹ØÓÚÔ­µã¶Ô³Æ£¬¹ÊÊÇ·ÇÆæ·Çżº¯Êý£¬¹Ê´íÎó£»
¢ÛÓÉ$f£¨x£©+2f£¨\frac{1}{x}£©=2x+1$£¬µÃf£¨$\frac{1}{x}$£©+2f£¨x£©=$\frac{2}{x}$+1£¬ÁªÁ¢¿ÉµÃf£¨x£©=$\frac{4}{3x}$$-\frac{2x}{3}$$+\frac{1}{3}$£¬µÃÔòf£¨2£©=-$\frac{1}{3}$£¬¹ÊÕýÈ·£»
¢Üº¯Êýf£¨x£©ÔÚ£¨a£¬b]ºÍ£¨b£¬c£©É϶¼ÊÇÔöº¯Êý£¬Ö»ÄÜ˵Ã÷º¯ÊýµÄÔöÇø¼äΪ£¨a£¬b]ºÍ£¨b£¬c£©£¬µ«º¯Êýf£¨x£©ÔÚ£¨a£¬c£©Éϲ»Ò»¶¨ÊÇÔöº¯Êý£¬¹Ê´íÎó£®
¹Ê´ð°¸Îª¢Ù¢Û£®

µãÆÀ ¿¼²éÁ˺¯Êý¶¨ÒåÓòµÄÇ󷨣¬º¯ÊýÆæżÐÔµÄÅж¨£¬³éÏóº¯ÊýµÄÇó½âºÍµ¥µ÷Çø¼äµÄÈ·¶¨£®ÊôÓÚ»ù´¡ÌâÐÍ£¬Ó¦ÊìÁ·ÕÆÎÕ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®C1µÄ²ÎÊý·½³Ìʽ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬A£¨¦Ñ1£¬¦È0£©ºÍ£¨¦Ñ2£¬¦È0+$\frac{¦Ð}{2}$£©¶¼ÔÚÇúÏßC1ÉÏ£¬$\frac{1}{{{¦Ñ}_{1}}^{2}}$+$\frac{1}{{{¦Ñ}_{2}}^{2}}$=$\frac{5}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Ä³ÂÃÓεãÓÐ50Á¾×ÔÐгµ¹©ÓοÍ×â»õʹÓ㬹ÜÀíÕâЩ×ÔÐгµµÄ·ÑÓÃÊÇÿÈÕ115Ôª£®¸ù¾Ý¾­Ñ飬ÈôÿÁ¾×ÔÐгµµÄÈÕ×â½ð²»³¬¹ý6Ôª£¬Ôò×ÔÐгµ¿ÉÒÔÈ«²¿×â³ö£»Èô³¬¹ý6Ôª£¬ÔòÿÌá¸ß1Ôª£¬×â²»³öÈ¥µÄ×ÔÐгµ¾ÍÔö¼Ó3Á¾£®
ÂÃÓεã¹æ¶¨£ºÃ¿Á¾×ÔÐгµµÄÈÕ×â½ð²»µÍÓÚ3Ôª²¢ÇÒ²»³¬¹ý20Ôª£¬Ã¿Á¾×ÔÐгµµÄÈÕ×â½ðxԪֻȡÕûÊý£¬ÓÃy±íʾ³ö×âËùÓÐ×ÔÐгµµÄÈÕ¾»ÊÕÈ루¼´Ò»ÈÕÖгö×âµÄËùÓÐ×ÔÐгµµÄ×ÜÊÕÈë¼õÈ¥¹ÜÀí·ÑºóµÄËùµÃ£©£®
£¨1£©Çóº¯Êýy=f£¨x£©µÄ½âÎöʽ£»
£¨2£©ÊÔÎÊÈÕ¾»ÊÕÈë×î¶àʱÿÁ¾×ÔÐгµµÄÈÕ×â½ðÓ¦¶¨Îª¶àÉÙÔª£¿ÈÕ¾»ÊÕÈë×î¶àΪ¶àÉÙÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªÒ»¸ö¸ß¶È²»ÏÞµÄÖ±ÈýÀâÖùABC-A1B1C1£¬AB=4£¬BC=5£¬CA=6£¬µãPÊDzàÀâAA1ÉÏÒ»µã£¬¹ýA×÷ƽÃæ½ØÈýÀâÖùµÃ½ØÃæADE£¬¸ø³öÏÂÁнáÂÛ£º¢Ù¡÷ADEÊÇÖ±½ÇÈý½ÇÐΣ»¢Ú¡÷ADEÊǵȱßÈý½ÇÐΣ»¢ÛËÄÃæÌåAPDEΪÔÚÒ»¸ö¶¥µã´¦µÄÈýÌõÀâÁ½Á½´¹Ö±µÄËÄÃæÌ壮ÆäÖÐÓв»¿ÉÄܳÉÁ¢µÄ½áÂ۵ĸöÊýÊÇ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®º¯Êýy=2-sin2¦ØxµÄ×îСÕýÖÜÆÚΪ¦Ð£¬ÔòʵÊý¦ØµÄֵΪ¡À1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÉèHΪÈñ½Ç¡÷ABCµÄ´¹ÐÄ£¬¹ýµãH×÷BHµÄ´¹Ïߣ¬ÓëAB½»ÓÚD£¬¹ýµãH×÷CHµÄ´¹Ïߣ¬ÓëAC½»ÓÚµãE£¬µãC×÷BCµÄ´¹Ïߣ¬ÓëÖ±ÏßDE½»ÓÚµãF£¬Ö¤Ã÷FH=FC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨1£¬-x£©£¬$\overrightarrow{b}$=£¨x+2£¬x£©£¨x¡ÊR£©£®
£¨1£©Èô$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬ÇóxµÄÖµ£»
£¨2£©Èô$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬Çó|$\overrightarrow{a}$-$\overrightarrow{b}$|£®
£¨3£©Èô$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬ÇÒx£¼0£¬$\overrightarrow{AB}$=$\overrightarrow{a}$-$\overrightarrow{b}$£¬$\overrightarrow{BC}$=$\overrightarrow{a}$£¬Çó¡÷ABCµÄ±ß³¤ACµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªµÈ²îÊýÁÐ{an}Âú×ãa2=4£¬a6+a8=18£®
£¨I£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨II£©ÇóÊýÁÐ{$\frac{1}{n{a}_{n}}$}µÄÇ°nÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èôº¯Êýf£¨x£©ÎªÆ溯Êý£¬ÇÒµ±x£¾0ʱ£¬f£¨x£©=2x£¬Ôòf£¨-2£©µÄÖµÊÇ£¨¡¡¡¡£©
A£®-4B£®$-\frac{1}{4}$C£®$\frac{1}{4}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸