精英家教网 > 高中数学 > 题目详情
17.函数y=lg$\frac{x-3}{x+3}$的图象(  )
A.关于x轴对称B.关于y轴对称C.关于直线y=x对称D.关于原点对称

分析 求出函数y=f(x)的定义域,判断f(x)的奇偶性,即可得出f(x)的对称性.

解答 解:∵函数y=f(x)=lg$\frac{x-3}{x+3}$,
∴$\frac{x-3}{x+3}$>0,
解得x<-3或x>3,
∴f(x)的定义域为(-∞,-3)∪(3,+∞);
∴f(-x)=lg$\frac{-x-3}{-x+3}$=lg$\frac{x-3}{x+3}$=-lg$\frac{x+3}{x-3}$=-f(x),
∴f(x)是定义域上的奇函数,图象关于原点对称.
故选:D.

点评 本题考查了函数的奇偶性与对称性的判断问题,解题时应先求函数的定义域,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设1+cos2θ=3sinθcosθ,则tanθ=1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)对任意非零实数a和b恒成立,求实数x的取值范围.
(2)设函数$f(x)=(2{log_4}x-\frac{1}{2})$,若f(x)≥mlog4x对于任意x∈[4,16]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$y=\frac{x-1}{{|{x-1}|}}+\frac{x+2}{{|{x+2}|}}$的值域是{-2,0,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=e|x|+x2,则使得f(x)>f(2x-1)成立的x的取值范围是(  )
A.$({\frac{1}{3},1})$B.$({-∞,\frac{1}{3}})∪({1,+∞})$C.(-$\frac{1}{3}$,$\frac{1}{3}$)D.$({-∞,-\frac{1}{3}})∪({\frac{1}{3},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆5x2-ky2=5的一个焦点是(0,2),那么k等于(  )
A.-1B.1C.$\sqrt{5}$D.$-\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图为函数y=Asin(ωx+ϕ)+c(A>0,ω>0,ϕ>0)图象的一部分,求此函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,若直线l的极坐标方程为psin(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(1)把直线l的极坐标方程化为直角坐标系方程;
(2)已知P为椭圆C:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{9}=1$上一点,求P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数$f(x)=\left\{\begin{array}{l}{x^{\frac{1}{3}}},x≥8\\ 2f(x+2),x<8\end{array}\right.$,则f(4)=8.

查看答案和解析>>

同步练习册答案