精英家教网 > 高中数学 > 题目详情
10.函数y=2x-$\frac{1}{{2}^{x}}$的反函数是y=log2$\frac{x+\sqrt{{x}^{2}+4}}{2}$.

分析 根据已知中y=2x-$\frac{1}{{2}^{x}}$的解析,用y表示x,进而可得相应的反函数.

解答 解:令t=2x,(t>0),
则y=2x-$\frac{1}{{2}^{x}}$=t-$\frac{1}{t}$,即t2-yt-1=0,
则t=$\frac{y+\sqrt{{y}^{2}+4}}{2}$,或t=$\frac{y-\sqrt{{y}^{2}+4}}{2}$(舍去),
即2x=$\frac{y+\sqrt{{y}^{2}+4}}{2}$,
∴x=log2$\frac{y+\sqrt{{y}^{2}+4}}{2}$,
函数y=2x-$\frac{1}{{2}^{x}}$的反函数是y=log2$\frac{x+\sqrt{{x}^{2}+4}}{2}$,
故答案为:y=log2$\frac{x+\sqrt{{x}^{2}+4}}{2}$

点评 本题考查的知识点是反函数,熟练掌握反函数的求解步骤是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{2x}{{x}^{2}+1}$.
(1)用定义证明该函数在[1,+∞)上是减函数;
(2)判断该函数的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设{an},{bn]均为等差数列,将它们的前n项之和分别记为An,Bn,若$\frac{{A}_{n}}{{B}_{n}}=\frac{3n-1}{2n+1}$,则$\frac{19{a}_{11}}{{b}_{5}}$的值为(  )
A.32B.62C.72D.92

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,已知$tan\frac{A+B}{2}=sinC$,则△ABC的形状为(  )
A.正三角形B.等腰三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin$\frac{x}{2}$cos$\frac{x}{2}$-$\frac{1}{2}$cos2$\frac{x}{2}$+$\frac{1}{4}$.
(1)求f(x)的最小正周期;
(2)若f(x)=-$\frac{6}{13}$,x∈[$\frac{π}{2}$,$\frac{3π}{2}$],求cosx的值;
(3)将函数f(x)的图象向右平移m个单位,使平移后的图象关于原点对称,若0<m<π,试求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)是定义在R上的函数,f(1)=2,且对任意的x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1,则f(2014)=2015.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}满足a2=0,a6+a8=10.
(1)求数列{an}的通项公式;
(2)求数列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等腰△AOB中,|AO|=|AB|,点O(0,0),A(1,3),而点B在x轴的正半轴上,则直线AB的方程为(  )
A.y-1=3(x-3)B.y-1=-3(x-3)C.y-3=3(x-1)D.y-3=-3(x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=cosωx•sinωx+$\sqrt{3}$cos2ωx-$\frac{{\sqrt{3}}}{2}$(0<ω≤1),且满足f(x+π)=f(x)
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)求当x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]时,y=f(x)的取值范围;
(Ⅲ)若3[f(x)]2+m•f(x)-1=g(x),求g(x)在x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]上的最小值.

查看答案和解析>>

同步练习册答案