精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,O为坐标原点,| |=| |=| |=1, ,A(1,1),则 的取值范围(
A.[﹣1﹣ ﹣1]
B.[﹣ ,﹣ + ]?
C.[ + ]
D.[1﹣ ,1+ ]

【答案】B
【解析】解:由| |=| |=| |=1,可知O为外心,
,可知O又为重心.
则有△BCD为圆O:x2+y2=1的内接等边三角形,
即有 =( =
=| || |cos120°﹣| || |cos<
=﹣ cos< >,由于0≤< >≤π,
则﹣1≤cos< >≤1,
即有 ∈[﹣ - ,﹣ + ].
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是(
A.如果两条直线l1与l2垂直,那么它们的斜率之积一定等于﹣1
B.“a>0,b>0”是“ + ≥2”的充分必要条件
C.命题“若x=y,则sinx=siny”的逆否命题为真命题
D.“a≠﹣5或b≠5”是“a+b≠0”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足:函数的图象关于直线对称,且当是函数的导函数)成立.若,则的大小关系是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

(Ⅰ)若的必要条件,求实数的取值范围;

(Ⅱ)若,“”为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】结合命题函数上是减函数;命题函数的值域为.

(Ⅰ)若为真命题,求实数的取值范围;

(Ⅱ)如果为真命题, 为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD, ,PA=2,E是PC上的一点,PE=2EC.
(Ⅰ)证明:PC⊥平面BED;
(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,讨论的单调性;

(Ⅱ)若函数的图象上存在不同的两点,使得直线的斜率成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=log2(x2﹣3x+2)的递减区间是(
A.(﹣∞,1)
B.(2,+∞)
C.(﹣∞,
D.( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线的参数方程为 (为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)写出的直角坐标方程,并且用 (为直线的倾斜角, 为参数)的形式写出直线的一个参数方程;

(2) 是否相交,若相交求出两交点的距离,若不相交,请说明理由.

查看答案和解析>>

同步练习册答案