精英家教网 > 高中数学 > 题目详情
17.已知A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}.
(1)若a=3时,求A∩B,A∪(∁RB);
(2)若B⊆A,求a的取值范围.

分析 (1)由集合的运算即可得解.
(2)解决本题的关键是要考虑集合B能否为空集,先分析满足空集的情况,再通过分类讨论的思想来解决问题.同时还要注意分类讨论结束后的总结.

解答 解:(1)∵a=3,
∴B={x|4≤x≤5}.
∴A∩B={x|4≤x≤5},
∴A∪(∁RB)=R;
(2)当a+1>2a-1,即a<2时,B=∅,满足B⊆A,即a<2;
当a+1=2a-1,即a=2时,B=3,满足B⊆A,即a=2;
当a+1<2a-1,即a>2时,由B⊆A,得$\left\{\begin{array}{l}{a+1≥-2}\\{2a-1≤5}\end{array}\right.$即2<a≤3;
综上所述:a的取值范围为a≤3.
故实数a的取值范围是{a|-3≤a≤3}.

点评 本题考查的是集合包含关系的判断及应用.解决本题的关键是要考虑集合B能否为空集,满足空集的条件,并能以此条件为界进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知a,b,c分别为△ABC三个内角A,B,C的对边,$acosC+\sqrt{3}asinC-b-c=0$
(Ⅰ)求A;
(Ⅱ)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.命题P:y=ln(x2-kx+2)的定义域为R;命题q:x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则$\frac{(a+b)^{2}}{cd}$≥k+1恒成立,若命题p∨q为真命题,p∧q为假命题,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=$\sqrt{2x+3}$+$\frac{1}{x}$的定义域是(  )
A.{x|x≥-$\frac{3}{2}$}B.{x|x≥-$\frac{3}{2}$且x≠0}C.{x|x≤$\frac{3}{2}$}D.{x|x≤$\frac{3}{2}$且x≠0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若关于x的不等式(ax-20)(lg2a-lgx)≤0对任意的x∈N+恒成立,则实数a的取值范围是[3,$\frac{10}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{OA},\overrightarrow{OB}$满足$\overrightarrow{|{OA}|}=\overrightarrow{|{OB}|}=1,\overrightarrow{OA}⊥\overrightarrow{OB},\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}({λ,μ∈R})$,若M为AB的中点,并且$|{\overrightarrow{MC}}|=1$,则λ+μ的最大值是(  )
A.$1-\sqrt{3}$B.$1+\sqrt{2}$C.$\sqrt{5}$D.$1+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,等式f(x)•f(y)=f(x+y)成立,若数列{an}满足f(an+1)=$\frac{1}{f(\frac{1}{1+{a}_{n}})}$,(n∈N+)且a1=f(0),则下列结论成立的是(  )
A.f(a2013)>f(a2016B.f(a2014)>f(a2015C.f(a2016)<f(a2015D.f(a2014)<f(a2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若0≤a≤1,解关于x的不等式(x-a)(x+a-1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在盒子里有大小相同,仅颜色不同的5个小球,其中红球3个,黄球2个.现从中任取一球确定颜色后再放回盒子里,取出黄球则不再取球,且最多取3次.求:
(1)取一次就结束的概率;
(2)至少取到2个红球的概率.

查看答案和解析>>

同步练习册答案