精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,且经过点,圆的直径为的长轴.如图,是椭圆短轴端点,动直线过点且与圆交于两点,垂直于交椭圆于点.

(1)求椭圆的方程;
(2)求 面积的最大值,并求此时直线的方程.

(1) (2)

解析试题分析:(1)已知椭圆的离心率为即可得到的关系式,再结合椭圆过点,代入椭圆方程组成方程组可求解得到椭圆方程; (2) 要求面积可先求两个弦长度,是一直线与圆相交得到的弦长,可采用圆的弦长公式,而是椭圆的弦长,使用公式求解,把面积表示成变量的函数, 求其最值时可用换元法求解.对当斜率为0时要单独讨论.
试题解析:(1)由已知得到,所以,即.
又椭圆经过点,故,
解得,
所以椭圆的方程是
(2)因为直线且都过点
①当斜率存在且不为0时,设直线,直线,即,
所以圆心到直线的距离为,所以直线被圆所截弦
得, ,
所以,
,
所以,
,则,
,
,即时,等号成立,
面积的最大值为,此时直线的方程为,
②当斜率为0时,即,此时,
的斜率不存在时,不合题意;
综上, 面积的最大值为,此时直线的方程为.
考点:直线与圆的位置关系,弦长公式,换元法求函数最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l:x-2y=0的距离为,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆与直线相切且与圆外切。
(1)求圆心的轨迹方程;
(2)过定点作直线交轨迹两点,点关于坐标原点的对称点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C的方程为:x2+y2-2mx-2y+4m-4=0.(m∈R).
(1)试求m的值,使圆C的面积最小;
(2)求与满足(1)中条件的圆C相切,且过点(1,-2)的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆Cx2y2x-6ym=0与直线lx+2y-3=0.
(1)若直线l与圆C没有公共点,求m的取值范围;
(2)若直线l与圆C相交于PQ两点,O为原点,且OPOQ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,已知圆:和圆:

(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C经过A(1,1)、B(2,)两点,且圆心C在直线l:x-y+1=0上,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C的半径为2,圆心在轴正半轴上,直线与圆C相切
(1)求圆C的方程;
(2)过点的直线与圆C交于不同的两点且为
求:的面积.

查看答案和解析>>

同步练习册答案