精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
如图,已知圆锥的轴截面ABC是边长为的正三角形,O是底面圆心.

(1)求圆锥的表面积;
(2)经过圆锥的高的中点作平行于圆锥底面的截面,求截得的圆台的体积.

(1) 
(2)

解析试题分析:解:(1)由题意可知,则,即该圆锥的底面半径,母线.所以该圆锥的表面积为

(2)在中,

的中点,
∴小圆锥的高h¢=,小圆锥的底面半径r¢=,则截得的圆台的体积为

考点:圆锥的表面积和台体的体积的求解
点评:解决的关键是能得到圆锥的底面半径和高度,以及台体的底面的半径以及高度,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知矩形中,,将矩形沿对角线折起,使移到点,且在平面上的射影恰好在上.

(1)求证:
(2)求证:平面平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一个几何体的三视图如图所示。(1)求此几何体的表面积;(2)如果点在正视图中所示位置:为所在线段中点,为顶点,求在几何体表面上,从点到点的最短路径的长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分线段PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB.

(1)求证:PC⊥平面BDE;
(2)若点Q是线段PA上任一点,判断BD、DQ的位置关系,并证明结论;
(3)若AB=2,求三棱锥B﹣CED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

圆柱的高是8 cm,表面积是130 π cm2,求它的底面圆半径和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在棱长为1的正方体中.

(1)求异面直线所成的角;
(2)求证平面⊥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中点,N是BC的中点,点P在直线A1B1上,且满足

(1)证明:PN⊥AM
(2)若,求直线AA1与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是侧面全等的四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图.
(Ⅰ)求该安全标识墩的体积;
(Ⅱ)证明:直线BD平面PEG.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个多面体的直观图和三视图如下:(其中分别是中点)

(1)求证:平面;
(2)求多面体的体积.

查看答案和解析>>

同步练习册答案