精英家教网 > 高中数学 > 题目详情

【题目】一个孩子的身高与年龄(周岁)具有相关关系,根据所采集的数据得到线性回归方程,则下列说法错误的是(

A.回归直线一定经过样本点中心

B.斜率的估计值等于6.217,说明年龄每增加一个单位,身高就约增加6.217个单位

C.年龄为10时,求得身高是,所以这名孩子的身高一定是

D.身高与年龄成正相关关系

【答案】C

【解析】

利用线性回归方程过样本中心点可判断A;由回归方程求出的数值是估计值可判断B、C;根据回归方程的一次项系数可判断D;

对于A,线性回归方程一定过样本中心点,故A正确;

对于B,由于斜率是估计值,可知B正确;

对于C,当时,求得身高是是估计值,故C错误;

对于D,线性回归方程的一次项系数大于零,故身高与年龄成正相关关系,故D正确;

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司的电子新产品未上市时,原定每件售价100元,经过市场调研发现,该电子新产品市场潜力很大,该公司决定从第一周开始销售时,该电子产品每件售价比原定售价每周涨价4元,5周后开始保持120元的价格平稳销售,10周后由于市场竞争日益激烈,每周降价2元,直到15周结束,该产品不再销售.

(Ⅰ)求售价(单位:元)与周次)之间的函数关系式;

(Ⅱ)若此电子产品的单件成本(单位:元)与周次之间的关系式为,试问:此电子产品第几周的单件销售利润(销售利润售价成本)最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.

1)讨论的极值点的个数;

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和,已知.

1)求证:数列为等差数列,并求出其通项公式;

2)设,又对一切恒成立,求实数的取值范围;

3)已知为正整数且,数列共有项,设,又,求的所有可能取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

求定义域;

若函数的反函数是其本身,求a的值;

求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AOB是一块半径为r的扇形空地,.某单位计划在空地上修建一个矩形的活动场地OCDE及一矩形停车场EFGH,剩余的地方进行绿化.若,设

(Ⅰ)记活动场地与停车场占地总面积为,求的表达式;

(Ⅱ)当为何值时,可使活动场地与停车场占地总面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定平面上的点集中任三点均不共线。将中所有的点任意分成83组,使得每组至少有3个点,且每点恰好属于一组,然后将在同一组的任两点用一条线段相连,不在同一组的两点不连线段,这样得到一个图案。不同的分组方式得到不同的图案。将图案中所含的以中的点为顶点的三角形的个数记为

(1)求的最小值

(2)设是使的一个图案,若将中的线段(指以的点为端点的线段)用4种颜色染色,每条线段恰好染一种颜色。证明存在一个染色方案,使染色后不含以的点为顶点的三边颜色相同的三角形。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(多选题)下列说法中正确的是(

A.在频率分布直方图中,中位数左边和右边的直方图的面积相等.

B.AB为互斥事件,则A的对立事件与B的对立事件一定互斥.

C.某个班级内有40名学生,抽10名同学去参加某项活动,则每4人中必有1人抽中.

D.若回归直线的斜率,则变量正相关.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在处的切线方程为

(1),证明:

(2)若方程有两个实数根,且,证明:

查看答案和解析>>

同步练习册答案