精英家教网 > 高中数学 > 题目详情
(2012•许昌二模)某单位安排7位员工在2012年1月22日至1月28日(即今年除夕到正月初六)值班,每天安排1人,每人值班1天.若7位员工中的甲、乙排在相邻两天,丙不排在除夕,丁不排在初一,则不同的安排方案共有(  )
分析:分类讨论,甲乙排在假期的第一天和第二天、第二天和第三天、最后三天中的任意连续两天,分别求出不同的安排方案,即可得到结论.
解答:解:①甲乙排在假期的第一天和第二天,丙乙无限制,所以有2×120=240种
②当甲乙分别排在假期的第二天和第三天,则丙不能在第一天,可排其他4天,所以有8×24=192种
③当甲乙分别排在最后三天中的任意连续两天时,其他人五天排其他5人,丙不排在除夕,丁不排在初一,所以共有8×78=624种
所以不同的安排方案共有240+192+624=1056种
故选D.
点评:本题考查计数原理的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•许昌二模)在直角坐标系xOy中,直线l的参数方程为
x=3-
2
2
t
y=
5
+
2
2
t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2
5
sinθ

(Ⅰ)求圆C的圆心到直线l的距离;
(Ⅱ)设圆C与直线l交于点A、B.若点P的坐标为(3,
5
),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)设F为抛物线C:y2=2px(p>0)的焦点,过F且与抛物线C对称轴垂直的直线被抛物线C截得线段长为4.
(1)求抛物线C方程.
(2)设A、B为抛物线C上异于原点的两点且满足FA⊥FB,延长AF、BF分别抛物线C于点C、D.求:四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)设a≥0,函数f(x)=[x2+(a-3)x-2a+3]exg(x)=2-a-x-
4x+1

( I)当a≥1时,求f(x)的最小值;
( II)假设存在x1,x2∈(0,+∞),使得|f(x1)-g(x2)|<1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)若椭圆
x2
m
+
y2
8
=1
的焦距是2,则m的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(Ⅰ)求证AF∥平面BCE;
(Ⅱ)设AB=1,求多面体ABCDE的体积.

查看答案和解析>>

同步练习册答案