精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中φ∈(0, ),则函数g(x)=cos(2x﹣φ)的图象(
A.关于点( ,0)对称
B.可由函数f(x)的图象向右平移 个单位得到
C.可由函数f(x)的图象向左平移 个单位得到
D.可由函数f(x)的图象向左平移 个单位得到

【答案】C
【解析】解:∵函数f(x)=2sinxsin(x+3φ)是奇函数,其中φ∈(0, ),∴φ= ,∴f(x)=2sinxsin(x+ )=sin2x=cos(2x﹣ )=cos2(x﹣ ),
则函数g(x)=cos(2x﹣φ)=cos(2x﹣ )=cos2(x﹣ ) 的图象可由函数f(x)的图象向左平移 个单位得到的,
故选:C.
由条件利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知曲线C1的参数方程为 ,(α为参数,且α∈[0,π)),曲线C2的极坐标方程为ρ=﹣2sinθ.
(1)求C1的极坐标方程与C2的直角坐标方程;
(2)若P是C1上任意一点,过点P的直线l交C2于点M,N,求|PM||PN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x|x﹣a|+2x﹣3,其中a∈R
(1)当a=4,2≤x≤5时,求函数f(x)的最大值和最小值,并写出相应的x的值.
(2)若f(x)在R上恒为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C1的参数方程为 (a>b>0,φ为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M(2, )对应的参数φ= .θ= 与曲线C2交于点D( ).
(1)求曲线C1 , C2的直角坐标方程;
(2)A(ρ1 , θ),B(ρ2 , θ+ )是曲线C1上的两点,求 + 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC内角A,B,C的对边分别是a,b,c,cos = ,且acosB+bcosA=2,则△ABC的面积的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,点D在边BC的延长线上,且BC=2CD,AD= . (Ⅰ)求CD的长;
(Ⅱ)求sin∠BAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对100名五年级学生进行了问卷调查,得到如下2×2列联表,平均每天喝500ml以上为常喝,体重超过50kg为肥胖.

不常喝

常喝

合计

肥胖

x

y

50

不肥胖

40

10

50

合计

A

B

100

现从这100名儿童中随机抽取1人,抽到不常喝碳酸饮料的学生的概率为
(1)求2×2列联表中的数据x,y,A,B的值;
(2)根据列联表中的数据绘制肥胖率的条形统计图,并判断常喝碳酸饮料是否影响肥胖?
(3)是否有99.9%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由. 附:参考公式:K2= ,其中n=a+b+c+d.
临界值表:

P(K2≥k)

0.05

0.025

0.010

0.005

0.001

k

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin3x+cos3x的图象沿x轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为(
A.
B.
C.
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠ABC=120°.点E是棱PC的中点,平面ABE与棱PD交于点F. (Ⅰ)求证:AB∥EF;
(Ⅱ)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求平面PAF与平面AEF所成的二面角的正弦值.

查看答案和解析>>

同步练习册答案