精英家教网 > 高中数学 > 题目详情
9.已知集合A={x|y=$\frac{1}{\sqrt{4-{x}^{2}}}$$+\sqrt{lo{g}_{0.5}(x-1)}$},B={y|y=2${\;}^{{x}^{2}-2x}$+1},求A∩B,A∪(∁RB).

分析 先解出关于集合A,B中的不等式,求出集合A、B,从而根据集合的运算性质计算即可.

解答 解:集合A={x|$\left\{\begin{array}{l}{4{-x}^{2}>0}\\{0<x-1≤1}\end{array}\right.$}={x|1<x<2},
B={y|y=2${\;}^{{x}^{2}-2x}$+1}={y|y=${2}^{{(x-1)}^{2}-1}$+1}={y|y≥$\frac{3}{2}$},
∴A∩B=[$\frac{3}{2}$,2),
由∁RB=(-∞,$\frac{3}{2}$),
得A∪(∁RB)=(1,$\frac{3}{2}$).

点评 本题考查了集合的运算,考查指数函数、对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.不等式${log_{\frac{1}{2}}}$(3-x)≥-2的解集为:[-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(sinx+cosx,$\sqrt{2}$cosx ),$\overrightarrow{b}$=(cosx-sin x,$\sqrt{2}$sinx),x∈[-$\frac{π}{8}$,0].
(1)求|$\overrightarrow{a}$|的取值范围;
(2)求函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$-|$\overrightarrow{a}$|的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x,y满足(x-1)2+y2=16,则x2+y2的最大值为(  )
A.3B.5C.9D.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=loga(x-1)+2x(a>0,且a≠1)的图象经过定点A(m,n),则m+n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a=0.71.3,b=30.2,c=log0.25,则a、b、c之间的大小关系为(  )
A.a<c<bB.c<b<aC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆的方程为x2+y2=$\frac{7}{4}$,设过点M(0,1)的直线分别与该圆交于点A、B,若|AM|=3|MB|,则直线AB的斜率为$±\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和Sn,a1=1,an≠0,且Sn=$\frac{1}{2}$anan+1(n∈N*).
(1)求数列{an}的通项公式;
(2)记bn=$\frac{1}{{a}_{n}{a}_{n+1}{a}_{n+2}}$,设Tn为数列bn的前n项和,且Tn<|x+m|+|x-3m|对任意实数x恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{(-1)n(2n-1)}的前2015项的和S2015=-1008.

查看答案和解析>>

同步练习册答案