【题目】已知圆及直线:.
(1)证明:不论取什么实数,直线与圆C总相交;
(2)求直线被圆C截得的弦长的最小值及此时的直线方程.
【答案】(1)证明见解析;(2) ,.
【解析】
(1)根据直线过的定点在圆内,得出直线与圆总相交.
(2)作图分析出当直线与半径CM垂直与点M时|AB|最短,利用勾股定理求出此时|AB|的长,再运用两直线垂直时斜率相乘等于1,求出此时直线的方程.
解:(1)证明:直线的方程可化为,
由方程组,解得
所以直线过定点M(3,1),
圆C化为标准方程为,所以圆心坐标为(1,2),半径为5,
因为定点M(3,1)到圆心(1,2)的距离为√,
所以定点M(3,1)在圆内,
故不论m取什么实数,过定点M(3,1)的直线与圆C总相交;
(2)设直线与圆交于A、B两点,当直线与半径CM垂直与点M时,直线被截得的弦长|AB|最短,
此时,
此时,所以直线AB的方程为,即.
故直线被圆C截得的弦长的最小值为,此时的直线的方程为.
科目:高中数学 来源: 题型:
【题目】已知是两条异面直线,直线与都垂直,则下列说法正确的是( )
A. 若平面,则
B. 若平面,则,
C. 存在平面,使得,,
D. 存在平面,使得,,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本与科技成本的投入次数的关系是=.若水晶产品的销售价格不变,第次投入后的年利润为万元.①求出的表达式;②问从今年算起第几年利润最高?最高利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,为两个不同的平面,,为两条不同的直线,有以下命题:
①若,,则.②若,,则.③若,,则.④若,,,则.
其中真命题有()
A.①②B.①③C.②③D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线C的极坐标方程为.
(1)求直线和曲线C的直角坐标方程;
(2)若点P为曲线C上任一点,求点P到直线的距离的最大值,并求此时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com