精英家教网 > 高中数学 > 题目详情
已知f(x)=(2+
x
)n
,其中n∈N*
(1)若展开式中含x3项的系数为14,求n的值;
(2)当x=3时,求证:f(x)必可表示成
s
+
s-1
(s∈N*)的形式.
(1)由二项式定理可知,二项展开式的通项公式为 Tr+1=
Crn
•2n-rx
r
2

r
2
=3,解得r=6,展开式中含x3项的系数为
C6n
•2n-6=14,解得 n=7.
(2)当x=3时,f(x)=(2+
3
)
n
=
C0n
•2n(
3
)
0
+
C1n
 2n-1 •(
3
1
+
C2n
 2n-2 •(
3
2

+…+
Cnn
 2n-n •(
3
n

(2+
3
)
n
=x+
3
y=
x2
+
3y2
,由于 (2+
3
)
n
=
a
+
b
,a、b∈N*
(2-
3
)
n
=
a
-
b
. …(7分)
∵(
a
+
b
)(
a
-
b
)=(2+
3
)
n
(2-
3
)
n
=1,
∴令 a=s,s∈N*,则必有 b=s-1,…(9分)
(2+
3
)
n
必可表示成
s
 +
s-1
 的形式,其中 s∈N*. …(10分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
(2-a)x+1(x<1)
ax(x≥1)
满足对任意x1x2,都有
f(x1)-f(x2)
x1-x2
>0
成立,那么a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
2-
x+3
x+1
的定义域为A,集合B={x|2a≤x≤a+1}
(1)求集合A
(2)若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•惠州模拟)设n为正整数,规定:fn(x)=
f{f[…f(x)]}
n个f
,已知f(x)=
2(1-x),0≤x≤1
x-1,1<x≤2

(1)解不等式f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)求f2007(
8
9
)
的值;
(4)若集合B={x|f12(x)=x,x∈[0,2]},证明:B中至少包含8个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2+x2cos(
π
2
+x)在[-a,a](a>0)
上的最大值与最小值分别为M、m,则M+m的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n为正整数,规定f1(x)=f(x),fn+1(x)=f(fn(x)),已知f(x)=
2(1-x),0≤x≤1
x-1,
 1<x≤2

(1)解不等式f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x.

查看答案和解析>>

同步练习册答案