精英家教网 > 高中数学 > 题目详情
P为直径AB=4的半圆上一点,C为AB延长线上一点,BC=2,△PCQ为正△,问∠POC为多大时,四边形OCQP面积最大,最大面积为多少?
分析:设∠POC=α,在△OPC中由余弦定理求得PC,进而表示出S△PCQ,利用两角和公式化简整理,根据正弦函数的性质求得最大值.
解答:解:设∠POC=α,在△OPC中由余弦定理得PC2=20-16cosα
S△OPC=4sinα,S△PCQ=5
3
-4
3
cosα
SOCPQ=4sinα-4
3
cosα+5
3
=8sin(α-
π
3
)+5
3

故当α=
5
6
π
时,四边形OCQP面积最大,最大面积为8+5
3
点评:本题主要考查了余弦定理的应用.考查了学生对基础知识的理解和运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中心,P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.
(1)建立适当的平面直角坐标系,求双曲线C的方程;
(2)设过点D的直线l与双曲线C相交于不同两点E、F,若△OEF的面积不小于2
2
,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分.)
A.设函数f(x)=|2x+1|-|x-4|.则不等式f(x)>2的解集为
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

B.(坐标系与参数方程选做题)曲线C:
x=-2+2cosα
y=2sinα
(α为参数),若以点O(0,0)为极点,x正半轴为极轴建立极坐标系,则该曲线的极坐标方程是
ρ=-4cosθ
ρ=-4cosθ


C.(几何证明选讲选做题) 如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,弧AE=弧AC,DE交AB于F,且AB=2BP=4,则PF=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

A.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F.求证:△PDF∽△POC.
B.已知矩阵A=
.
1-2
3-7
.

(1)求逆矩阵A-1
(2)若矩阵X满足AX=
3
1
,试求矩阵X.
C.坐标系与参数方程
已知极坐标系的极点O与直角坐标系的原点重合,极轴与x轴的正半轴重合,曲线C1:ρcos(θ+
π
4
)=2
2
与曲线C2
x=4t2
y=4t
,(t∈R)交于A、B两点.求证:OA⊥OB.
D.已知x,y,z均为正数,求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C上任一点到点E(-4,0),F(4,0)的距离的和为12,C与x轴的负半轴、正半轴依次交于A,B两点,点P在曲线C上且位于x轴上方,满足
PA
PF
=0

(1)求曲线C的方程;
(2)求点P的坐标;
(3)以曲线C的中心O为圆心,AB为直径作圆O,是否存在过点P的直线l使其被圆O所截的弦MN长为3
15
,若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于D,DE⊥AC交AC延长线于点E,OE交AD于点F.
(Ⅰ)求证:DE是⊙O的切线;
(Ⅱ)若
AC
AB
=
3
5
,求
AF
DF
的值.
(2)在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线
C:ρsin2θ=2acosθ(a>0),已知过点P(-2,-4)的直线L的参数方程为:
x=-2+
2
2
t
y=-4+
2
2
t
,直线L与曲线C分别交于M,N.
(Ⅰ)写出曲线C和直线L的普通方程;  
(Ⅱ)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

同步练习册答案