精英家教网 > 高中数学 > 题目详情
19.抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足∠AFB=$\frac{π}{2}$.设线段AB的中点M在l上的投影为N,则$\frac{{|{AB}|}}{{|{MN}|}}$的最小值是(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{2}$D.2

分析 设|AF|=a、|BF|=b,由抛物线定义结合梯形的中位线定理,得2|MN|=a+b.再由勾股定理得|AB|2=a2+b2,结合基本不等式求得|AB|的范围,从而可得$\frac{{|{AB}|}}{{|{MN}|}}$的最小值.

解答 解:设|AF|=a,|BF|=b,A、B在准线上的射影点分别为Q、P,连接AQ、BQ  
由抛物线定义,得AF|=|AQ|且|BF|=|BP|,
在梯形ABPQ中根据中位线定理,得2|MN|=|AQ|+|BP|=a+b.
由勾股定理得|AB|2=a2+b2,整理得:|AB|2=(a+b)2-2ab,
又∵ab≤($\frac{a+b}{2}$) 2
∴(a+b)2-2ab≥(a+b)2-2×($\frac{a+b}{2}$) 2=$\frac{1}{2}$(a+b)2
则|AB|≥$\frac{\sqrt{2}}{2}$(a+b).
∴$\frac{{|{AB}|}}{{|{MN}|}}$≥$\frac{\frac{\sqrt{2}}{2}(a+b)}{\frac{1}{2}(a+b)}$=$\sqrt{2}$,即$\frac{{|{AB}|}}{{|{MN}|}}$的最小值为$\sqrt{2}$.
故选C.

点评 本题考查抛物线的定义、简单几何性质,基本不等式求最值,余弦定理的应用等知识,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知抛物线y2=2px(p>0)上一点M (x0,4)到焦点F 的距离|MF|=$\frac{5}{4}$x0,则直线MF 的斜率kMF=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的公比q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知z为纯虚数,且(2+i)z=1+ai3(i为虚数单位),则复数a+z在复平面内对应的点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.点P是双曲线$\frac{x^2}{4}-\frac{y^2}{12}=1$上任意一点,则P到两渐近线距离的乘积是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若数f(x)=lnx+x2+ax(a∈R)
(1)若函数f(x)的图象在点P(1,f(1))处的切线与直线x+2y-1=0垂直,求实数a的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.点M为棱长是2$\sqrt{2}$的正方体ABCD-A1B1C1D1的内切球O球面上的动点,点N为B1C1的中点,若满足DM⊥BN,则动点M的轨迹的长度为(  )
A.$\frac{{2\sqrt{5}π}}{5}$B.$\frac{{4\sqrt{5}π}}{5}$C.$\frac{{2\sqrt{10}π}}{5}$D.$\frac{{4\sqrt{10}π}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设m为实数,函数f(x)=-e2x+2x+m.x∈R
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求证:当m≤1且x>0时,e2x>2x+2mx+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆x2+y2+2mx+2y=0的半径是1,则圆心坐标为(  )
A.(0,-1)B.(1,-1)C.(-1,0)D.(-1,1)

查看答案和解析>>

同步练习册答案