精英家教网 > 高中数学 > 题目详情

在如图所示的几何体中,四边形ACC1A1是矩形,FC1∥BC,EF∥A1C1,∠BCC1=90°,点A,B,E,A1在一个平面内,AB=BC=CC1=2,AC=2.

证明:(1)A1E∥AB.
(2)平面CC1FB⊥平面AA1EB.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形, 平面,于点

(1) 求证:
(2) 求直线与平面所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在空间四边形ABCD中,已知AC⊥BD,AD⊥BC,求证:AB⊥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD的中心,

(1)求证:平面.
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直三棱柱ABC-A1B1C1的底面为等腰直角三角形,∠BAC=90°,AB=AC=2,AA1=2,E,F分别是BC,AA1的中点.

求(1)异面直线EF和A1B所成的角.
(2)三棱锥A-EFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥PABCD的底面为直角梯形,ABCD,∠DAB=90°,PA⊥底面ABCD,且PAADDCAB=1,MPB的中点.

(1)求证:AMCM
(2)若NPC的中点,求证:DN∥平面AMC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在几何体ABCDE中,ABAD=2,ABADAE⊥平面ABDM为线段BD的中点,MCAE,且AEMC.

(1)求证:平面BCD⊥平面CDE
(2)若N为线段DE的中点,求证:平面AMN∥平面BEC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥PABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD.
 
(1)求证:PCBD
(2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥EBCD的体积取到最大值.
①求此时四棱锥EABCD的高;
②求二面角ADEB的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,底面是正方形,交于点底面的中点.

(1)求证:平面
(2)若,在线段上是否存在点,使平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案