精英家教网 > 高中数学 > 题目详情
20.若角α满足sinα-cosα=$\frac{\sqrt{2}}{2}$,则α=$\frac{5π}{12}+2kπ$或$\frac{13π}{12}+2kπ$,k∈Z.

分析 由已知推导出sin($α-\frac{π}{4}$)=$\frac{1}{2}$,由此能求出α.

解答 解:∵sinα-cosα=$\frac{\sqrt{2}}{2}$,
∴$\sqrt{2}sin(α-\frac{π}{4})=\frac{\sqrt{2}}{2}$,
∴sin($α-\frac{π}{4}$)=$\frac{1}{2}$,
∴$α-\frac{π}{4}$=$\frac{π}{6}+2kπ$或$α-\frac{π}{4}$=$\frac{5π}{6}+2kπ$,k∈Z,
∴$α=\frac{5π}{12}+2kπ$或$α=\frac{13π}{12}+2kπ$,k∈Z.
故答案为:$\frac{5π}{12}+2kπ$或$\frac{13π}{12}+2kπ$,k∈Z.

点评 本题考查三角函数中角的求法,是基础题,解题时要认真审题,注意三角函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.一个正四棱锥底面一边的长为a,侧棱长也都是a,则它的侧面积是2$\sqrt{3}$a2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{(2-[x])•|x-1|,0≤x<2}\\{1,x=2}\end{array}\right.$,其中[x]表示不超过x的最大整数,如,[-3•5]=-4,[1•2]=1,设n∈N*,定义函数fn(x)为:f1(x)=f(x),且fn(x)=f[fn-1(x)](n≥2),有以下说法:
①函数y=$\sqrt{x-f(x)}$的定义域为{x|$\frac{2}{3}$≤x≤2};
②设集合A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;
③f2015($\frac{8}{9}$)+f2016($\frac{8}{9}$)=$\frac{13}{9}$;
④若集合M={x|f12(x)=x,x∈[0,2]},则M中至少包含有8个元素.
其中说法正确的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆的焦点在坐标轴上,两焦点的中点为原点,且椭圆经过两点($\sqrt{6}$,1)和(-$\sqrt{3}$,-$\sqrt{2}$),求椭圆的方程、顶点坐标、焦点坐标和离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是(  )
A.{x|2<x<3}B.{x|-1<x≤0}C.{x|0≤x<6}D.{x|x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知实数x,y满足$\left\{\begin{array}{l}{4x-2y+1≥0}\\{x+y-2≤0}\\{x-4y-2≤0}\\{\;}\end{array}\right.$,则当$\frac{y+x}{x+1}$最小时,x=-$\frac{4}{7}$;y=-$\frac{9}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l1:ax-2y=2a-4与l2:2x+a2y=2a2+4.
(1)求证:直线l1与l2都过同一个定点.
(2)当0<a<2时,l1,l2与两坐标轴围成一个四边形,问:a取何值时,这个四边形的面积最小?求出这个最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=a+$\frac{2}{{e}^{x}+1}$(a∈R)是奇函数.
(1)求a的值;
(2)证明f(x)在R上是单调减函数;
(3)设直线y=$\frac{1-k}{1+k}$(k∈R且为常数)与函数f(x)的图象有交点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)=x2+(a-4)x+4-2a,g(x)=2x+1对任意的x1,x2∈(0,1)都有f(x1)>g(x2),a的取值范围?

查看答案和解析>>

同步练习册答案