精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}的前n项和为Sn , 等比数列{bn}的各项均为正数,满足:a1=b1=1,a5=b3 , 且S3=9.
(1)求数列{an}和{bn}的通项公式;
(2)求 + +…+ 的值.

【答案】
(1)解:设等差数列{an}的公差为d,等比数列的公比为q,

S3=a1+a2+a3=9.即a2=3,

d=a2﹣a1=2,

∴数列{an}的通项公式an=2n﹣1,

a5=b3=9,即q2=9,

∵bn>0,

∴q=3,

∴数列{bn}的通项公式bn=3n1


(2)解:由等差数列前n项和公式Sn= =n2

Sn+n=n2+n=n(n+1),

= =

+ +…+ =(1﹣ )+( )+( )+…+( ),

=1﹣

=

+ +…+ =


【解析】(1)由S3=9.可求得a2=3,d=a2﹣a1=2,根据等差数列通项公式即可求得an , a5=b3 , 求得q2=9,数列{bn}的各项均为正数,即可求得q=3,根据等比数列通项公式即可求得bn;(2)首先求得Sn+1=n2+n=n(n+1), = ,采用“裂项法“求得 = ,代入整理即可求得 + +…+ 的值.
【考点精析】本题主要考查了等比数列的通项公式(及其变式)和数列的前n项和的相关知识点,需要掌握通项公式:;数列{an}的前n项和sn与通项an的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,a2=2,an+2=(1+cos2 )an+sin2 ,则该数列的前10项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:

(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50 kg

箱产量≥50 kg

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= x3﹣2ax2﹣3x(a∈R). (Ⅰ)若f(x)在区间(﹣1,1)内为减函数,求实数a的取值范围;
(Ⅱ)对于实数a的不同取值,试讨论y=f(x)在(﹣1,1)内的极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p: =1表示双曲线方程,命题q:函数f(m)= 有意义.若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面ABCD⊥平面ADEF,四边形ABCD为菱形,四边形ADEF为矩形,M、N分别是EF、BC的中点,AB=2AF=2,∠CBA=60°.

(1)求证:AN⊥DM;
(2)求直线MN与平面ADEF所成的角的正切值;
(3)求三棱锥D﹣MAN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).

(I)求的解析式及单调递减区间;

(II)是否存在常数,使得对于定义域内的任意恒成立?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

(Ⅰ)如图,以过原点的直线的倾斜角θ为参数,求圆x2y2x=0的参数方程;

(Ⅱ)在平面直角坐标系中,已知直线l的参数方程为 (s为参数),曲线C的参数方程为 (t为参数),若lC相交于AB两点,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,直线 的参数方程为 为参数),以该直角坐标系的原点 为极点, 轴的非负半轴为极轴的极坐标系下,圆 的方程为
(1)求直线 的普通方程和圆 的圆心的极坐标;
(2)设直线 和圆 的交点为 ,求弦 的长.

查看答案和解析>>

同步练习册答案