【题目】已知等差数列{an}的前n项和为Sn , 等比数列{bn}的各项均为正数,满足:a1=b1=1,a5=b3 , 且S3=9.
(1)求数列{an}和{bn}的通项公式;
(2)求 + +…+ 的值.
【答案】
(1)解:设等差数列{an}的公差为d,等比数列的公比为q,
S3=a1+a2+a3=9.即a2=3,
d=a2﹣a1=2,
∴数列{an}的通项公式an=2n﹣1,
a5=b3=9,即q2=9,
∵bn>0,
∴q=3,
∴数列{bn}的通项公式bn=3n﹣1
(2)解:由等差数列前n项和公式Sn= =n2,
Sn+n=n2+n=n(n+1),
∴ = = ﹣ ,
+ +…+ =(1﹣ )+( ﹣ )+( ﹣ )+…+( ﹣ ),
=1﹣ ,
= .
+ +…+ = .
【解析】(1)由S3=9.可求得a2=3,d=a2﹣a1=2,根据等差数列通项公式即可求得an , a5=b3 , 求得q2=9,数列{bn}的各项均为正数,即可求得q=3,根据等比数列通项公式即可求得bn;(2)首先求得Sn+1=n2+n=n(n+1), = ,采用“裂项法“求得 = ﹣ ,代入整理即可求得 + +…+ 的值.
【考点精析】本题主要考查了等比数列的通项公式(及其变式)和数列的前n项和的相关知识点,需要掌握通项公式:;数列{an}的前n项和sn与通项an的关系才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50 kg | 箱产量≥50 kg | |
旧养殖法 | ||
新养殖法 |
(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)= x3﹣2ax2﹣3x(a∈R). (Ⅰ)若f(x)在区间(﹣1,1)内为减函数,求实数a的取值范围;
(Ⅱ)对于实数a的不同取值,试讨论y=f(x)在(﹣1,1)内的极值点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面ABCD⊥平面ADEF,四边形ABCD为菱形,四边形ADEF为矩形,M、N分别是EF、BC的中点,AB=2AF=2,∠CBA=60°.
(1)求证:AN⊥DM;
(2)求直线MN与平面ADEF所成的角的正切值;
(3)求三棱锥D﹣MAN的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).
(I)求的解析式及单调递减区间;
(II)是否存在常数,使得对于定义域内的任意恒成立?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
(Ⅰ)如图,以过原点的直线的倾斜角θ为参数,求圆x2+y2-x=0的参数方程;
(Ⅱ)在平面直角坐标系中,已知直线l的参数方程为 (s为参数),曲线C的参数方程为 (t为参数),若l与C相交于A,B两点,求AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系 中,直线 的参数方程为 为参数),以该直角坐标系的原点 为极点, 轴的非负半轴为极轴的极坐标系下,圆 的方程为 .
(1)求直线 的普通方程和圆 的圆心的极坐标;
(2)设直线 和圆 的交点为 、 ,求弦 的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com