ÒÑÖªÒ»Ôª¶þ´Îº¯Êýf£¨x£©=ax2+bx+c£¨a£¾0£¬c£¾0£©µÄͼÏóÓëxÖáÓÐÁ½¸ö²»Í¬µÄ¹«¹²µã£¬ÆäÖÐÒ»¸ö¹«¹²µãµÄ×ø±êΪ£¨c£¬0£©£¬ÇÒµ±0£¼x£¼cʱ£¬ºãÓÐf£¨x£©£¾0£®
£¨1£©µ±a=1£¬c=
12
ʱ£¬Çó³ö²»µÈʽf£¨x£©£¼0µÄ½â£»
£¨2£©Çó³ö²»µÈʽf£¨x£©£¼0µÄ½â£¨ÓÃa£¬c±íʾ£©£»
£¨3£©ÈôÒÔ¶þ´Îº¯ÊýµÄͼÏóÓë×ø±êÖáµÄÈý¸ö½»µãΪ¶¥µãµÄÈý½ÇÐεÄÃæ»ýΪ8£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨4£©Èô²»µÈʽm2-2km+1+b+ac¡Ý0¶ÔËùÓÐk¡Ê[-1£¬1]ºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©µ±a=1£¬c=
1
2
ʱ£¬f(x)=x2+bx+
1
2
£¬f£¨x£©µÄͼÏóÓëxÖáÓÐÁ½¸ö²»Í¬½»µã£¬ÓÉ´ËÄÜÇó³ö f£¨x£©£¼0µÄ½â¼¯£®
£¨2£©f£¨x£©µÄͼÏóÓëxÖáÓÐÁ½¸ö½»µã£¬ÓÉf£¨c£©=0£¬ÉèÁíÒ»¸ö¸ùΪx2£¬ÓÉ´ËÄÜÇó³öf£¨x£©£¼0µÄ½â¼¯£®
£¨3£©ÓÉ£¨2£©µÄf£¨x£©µÄͼÏóÓë×ø±êÖáµÄ½»µã·Ö±ðΪ(c£¬0)£¬(
1
a
£¬0)£¬(0£¬c)
£¬ÕâÈý½»µãΪ¶¥µãµÄÈý½ÇÐεÄÃæ»ýΪS=
1
2
(
1
a
-c)c=8
£¬ÓÉ´ËÄÜÇó³öaµÄÈ¡Öµ·¶Î§£®
£¨4£©ÓÉf£¨c£©=0£¬Öªac2+bc+c=0£¬ÓÉc£¾0£¬Öªac+b+1=0£¬ÓÉ´ËÄÜÇó³öʵÊýmµÄÈ¡Öµ·¶Î§£®
½â´ð£º£¨±¾Ð¡ÌâÂú·Ö£¨14·Ö£©£¬£¨1£©£¨2£©Ð¡ÌâÿÌ⣨3·Ö£©£¬£¨3£©£¨4£©Ð¡ÌâÿÌâ4·Ö£©
½â£º£¨1£©µ±a=1£¬c=
1
2
ʱ£¬f(x)=x2+bx+
1
2
£¬
f£¨x£©µÄͼÏóÓëxÖáÓÐÁ½¸ö²»Í¬½»µã£¬
¡ßf(
1
2
)=0
£¬ÉèÁíÒ»¸ö¸ùΪx2£¬Ôò
1
2
x2=
1
2
£¬¡àx2=1£¬
Ôò f£¨x£©£¼0µÄ½â¼¯Îª (
1
2
£¬1)
£®¡­£¨3·Ö£©
£¨2£©f£¨x£©µÄͼÏóÓëxÖáÓÐÁ½¸ö½»µã£¬
¡ßf£¨c£©=0£¬ÉèÁíÒ»¸ö¸ùΪx2£¬Ôòcx2=
c
a
¡àx2=
1
a
£¬
ÓÖµ±0£¼x£¼cʱ£¬ºãÓÐf£¨x£©£¾0£¬Ôò
1
a
£¾c
£¬
¡àf£¨x£©£¼0µÄ½â¼¯Îª(c£¬
1
a
)
¡­£¨6·Ö£©
£¨3£©ÓÉ£¨2£©µÄf£¨x£©µÄͼÏóÓë×ø±êÖáµÄ½»µã·Ö±ðΪ(c£¬0)£¬(
1
a
£¬0)£¬(0£¬c)

ÕâÈý½»µãΪ¶¥µãµÄÈý½ÇÐεÄÃæ»ýΪS=
1
2
(
1
a
-c)c=8
£¬¡­£¨8·Ö£©
¡àa=
c
16+c2
¡Ü
c
2
16
c
=
1
8
¹Êa¡Ê(0£¬  
1
8
]
£®¡­£¨10·Ö£©
£¨4£©¡ßf£¨c£©=0£¬¡àac2+bc+c=0£¬
ÓÖ¡ßc£¾0£¬¡àac+b+1=0£¬¡­£¨11·Ö£©
Ҫʹm2-2km¡Ý0£¬¶ÔËùÓÐk¡Ê[-1£¬1]ºã³ÉÁ¢£¬Ôò
µ±m£¾0ʱ£¬m¡Ý£¨2k£©max=2           
µ±m£¼0ʱ£¬m¡Ü£¨2k£©min=-2
µ±m=0ʱ£¬02¡Ý2k•0£¬¶ÔËùÓÐk¡Ê[-1£¬1]ºã³ÉÁ¢
´Ó¶øʵÊýmµÄÈ¡Öµ·¶Î§Îª  m¡Ü-2»òm=0»òm¡Ý2£®¡­£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²é¶þ´Îº¯ÊýµÄÐÔÖʺÍÓ¦Óã¬×ÛºÏÐÔÇ¿£¬ÄѶȴ󣮽âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÒ»Ôª¶þ´Îº¯Êýy=f£¨x£©Âú×ãf£¨-1£©=12£¬ÇÒ²»µÈʽf£¨x£©£¼0µÄ½â¼¯ÊÇ{x|0£¼x£¼5}£¬µ±a£¼0ʱ£¬½â¹ØÓÚxµÄ²»µÈʽ
2x2+(a-10)x+5f(x)
£¾1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ººþ±±Ê¡ÆÚÖÐÌâ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÒ»Ôª¶þ´Îº¯Êýf(x)Âú×ãf(-2+k)=f(-2-k)£¨k¡ÊR£©£¬ÇҸú¯ÊýµÄͼÏóÓëyÖá½»Óڵ㣨0£¬1£©£¬ÔÚxÖáÉϽصõÄÏ߶γ¤Îª£¬Çó¸ÃÒ»Ôª¶þ´Îº¯ÊýµÄ½âÎöʽ¡£

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÒ»Ôª¶þ´Îº¯Êýy=f£¨x£©Âú×ãf£¨-1£©=12£¬ÇÒ²»µÈʽf£¨x£©£¼0µÄ½â¼¯ÊÇ{x|0£¼x£¼5}£¬µ±a£¼0ʱ£¬½â¹ØÓÚxµÄ²»µÈʽ
2x2+(a-10)x+5
f(x)
£¾1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÒ»Ôª¶þ´Îº¯Êýf£¨x£©=ax2+bx+c£¨a£¾0£¬c£¾0£©µÄͼÏóÓëxÖáÓÐÁ½¸ö²»Í¬µÄ¹«¹²µã£¬ÆäÖÐÒ»¸ö¹«¹²µãµÄ×ø±êΪ£¨c£¬0£©£¬ÇÒµ±0£¼x£¼cʱ£¬ºãÓÐf£¨x£©£¾0£®
£¨1£©µ±a=1£¬c=
1
2
ʱ£¬Çó³ö²»µÈʽf£¨x£©£¼0µÄ½â£»
£¨2£©Çó³ö²»µÈʽf£¨x£©£¼0µÄ½â£¨ÓÃa£¬c±íʾ£©£»
£¨3£©ÈôÒÔ¶þ´Îº¯ÊýµÄͼÏóÓë×ø±êÖáµÄÈý¸ö½»µãΪ¶¥µãµÄÈý½ÇÐεÄÃæ»ýΪ8£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨4£©Èô²»µÈʽm2-2km+1+b+ac¡Ý0¶ÔËùÓÐk¡Ê[-1£¬1]ºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸