分析 (1)当n>1时,an=Sn-Sn-1=2an-2an-1,an=2an-1,当n=1,a1=1,数列{an}是以1为首项,2为公比的等比数列,根据等比数列通项公式即可求得数列{an}的通项公式;
(2)求得bn的通项公式,即可求得$\frac{1}{{{b_n}{b_{n+1}}}}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),采用”裂项法“即可求得数列{$\frac{1}{{{b_n}{b_{n+1}}}}$}的前n项和为Tn.
解答 解:(1)当n>1时,an=Sn-Sn-1=2an-2an-1,
∴an=2an-1,
当n=1时,a1=S1=2a1-1,
∴a1=1,
∴数列{an}是以1为首项,2为公比的等比数列,
数列{an}的通项公式:an=2n-1,
(2)bn=log2a2n=log222n-1=2n-1,
∴$\frac{1}{{{b_n}{b_{n+1}}}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
Tn=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)],
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$),
=$\frac{n}{2n+1}$,
数列{$\frac{1}{{{b_n}{b_{n+1}}}}$}的前n项和为Tn=$\frac{n}{2n+1}$,
点评 本题考查等比数列的通项公式,采用”裂项法“求数列的前n项和,考查分析问题及解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $\frac{4}{9}$ | C. | $\frac{5}{9}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?x∉R,x2=-1 | B. | ?x∈R,x2=-1 | C. | ?x∉R,x2=-1 | D. | ?x∈R,x2=-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (${\frac{1}{3}$,1) | B. | (${\frac{1}{2}$,1) | C. | (-${\frac{2}{3}$,1) | D. | ($\frac{2}{3}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 等边三角形 | B. | 等腰三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com