4£®ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðΪ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ÒÑÖªA=$\frac{¦Ð}{4}$£¬a=$\sqrt{3}$£®
£¨1£©ÈôsinB=$\frac{3}{5}$£¬Çó±ßcµÄ³¤£»
£¨2£©Èô|$\overrightarrow{CA}$+$\overrightarrow{CB}$|=$\sqrt{6}$£¬Çó$\overrightarrow{CA}$•$\overrightarrow{CB}$µÄÖµ£®

·ÖÎö £¨1£©ÓÉÕýÏÒ¶¨Àí¿ÉµÃb=$\frac{\sqrt{3}}{sin\frac{¦Ð}{4}}$$•\frac{3}{5}$=$\frac{3\sqrt{6}}{5}$ÓÉÓàÏÒ¶¨Àí¿ÉµÃ3=c2+$\frac{54}{25}$-2•$\frac{3\sqrt{6}}{5}$c•$\frac{\sqrt{2}}{2}$£¬¼´¿ÉÇó³öc£»
£¨2£©ÓÉÓàÏÒ¶¨Àí¿ÉµÃ$\left\{\begin{array}{l}{3={b}^{2}+{c}^{2}-\sqrt{2}bc}\\{£¨\frac{\sqrt{6}}{2}£©^{2}={b}^{2}+\frac{{c}^{2}}{4}-\frac{\sqrt{2}}{2}bc}\end{array}\right.$£¬Çó³öb£¬¼´¿ÉÇó$\overrightarrow{CA}$•$\overrightarrow{CB}$µÄÖµ£®

½â´ð ½â£º£¨1£©ÓÉÕýÏÒ¶¨Àí¿ÉµÃb=$\frac{\sqrt{3}}{sin\frac{¦Ð}{4}}$$•\frac{3}{5}$=$\frac{3\sqrt{6}}{5}$
ÓÉÓàÏÒ¶¨Àí¿ÉµÃ3=c2+$\frac{54}{25}$-2•$\frac{3\sqrt{6}}{5}$c•$\frac{\sqrt{2}}{2}$£¬
¡àc2-$\frac{6\sqrt{3}}{5}$c-$\frac{21}{25}$=0£¬
¡àc=$\frac{7\sqrt{3}}{5}$£»
£¨2£©ÓÉÓàÏÒ¶¨Àí¿ÉµÃ$\left\{\begin{array}{l}{3={b}^{2}+{c}^{2}-\sqrt{2}bc}\\{£¨\frac{\sqrt{6}}{2}£©^{2}={b}^{2}+\frac{{c}^{2}}{4}-\frac{\sqrt{2}}{2}bc}\end{array}\right.$£¬¡àb=$\sqrt{3}$£¬
¡ß|$\overrightarrow{CA}$+$\overrightarrow{CB}$|=$\sqrt{6}$£¬
¡à3+3+2$\overrightarrow{CA}$•$\overrightarrow{CB}$=6£¬
¡à$\overrightarrow{CA}$•$\overrightarrow{CB}$=0£®

µãÆÀ ±¾Ì⿼²éÕýÏÒ¶¨Àí¡¢ÓàÏÒ¶¨ÀíµÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÆäÖÐ×ó½¹µãF£¨-2£¬0£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßy=x+mÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬ÇÒÏ߶ÎABµÄÖеãM¹ØÓÚÖ±Ïßy=x+1µÄ¶Ô³ÆµãÔÚÔ²x2+y2=1ÉÏ£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÈçͼµÄƽÃæÖ±½Ç×ø±êϵÖУ¬OΪ×ø±êÔ­µã£¬µãBÔÚµ¥Î»Ô²ÉÏ£¬A£¨2£¬0£©£¬¡ÏAOB=¦È£¬¡÷ABCΪµÈ±ßÈý½ÇÐΣ®
£¨1£©ÈôÖ±ÏßOBµÄбÂÊΪ$\frac{2}{3}$£¬Çó$\frac{si{n}^{2}¦È-sin2¦È}{co{s}^{2}¦È+cos2¦È}$µÄÖµ£»
£¨2£©Èô¦È¡Ê£¨0£¬¦Ð£©£¬ÇóËıßÐÎOACBÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Ö±Ïßax+4y-a=0ÓëÖ±Ïß6x+8y+5=0ƽÐУ¬ÔòÕâÁ½Ö±Ïß¼äµÄ¾àÀëΪ1.1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®²»µÈʽ$\frac{3{x}^{2}+2x+2}{{x}^{2}+x+1}¡Ým$¶ÔÈÎÒâʵÊýx¶¼³ÉÁ¢£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇm¡Ü2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁÐÃüÌâÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\overrightarrow{a}$Óë$\overrightarrow{b}$¹²Ïߣ¬$\overrightarrow{b}$Óë$\overrightarrow{c}$¹²Ïߣ¬Ôò$\overrightarrow{a}$Óë$\overrightarrow{c}$Ò²¹²Ïß
B£®ÈÎÒâÁ½¸öÏàµÈµÄ·ÇÁãÏòÁ¿µÄʼµãÓëÖÕµã×ÜÊÇһƽÐÐËıßÐεÄËĸö¶¥µã
C£®ÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$²»¹²Ïߣ¬Ôò$\overrightarrow{a}$Óë$\overrightarrow{b}$¶¼ÊÇ·ÇÁãÏòÁ¿
D£®ÓÐÏàͬÆðµãµÄÁ½¸ö·ÇÁãÏòÁ¿²»Æ½ÐÐ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èç¹ûÖ¸Êýº¯Êýy=ax£¨a£¾0ÇÒa¡Ù1£©ÔÚx¡Ê[0£¬1]ÉϵÄ×î´óÖµÓë×îСֵµÄºÍΪ$\frac{5}{2}$£¬ÔòʵÊýa=$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®°ÑÏÂÁи÷½Ç»¯Îª0µ½2¦ÐµÄ½Ç¼ÓÉÏ2k¦Ð£¨k¡ÊZ£©µÄÐÎʽ£¬²¢Ö¸³öËüÃÇÊÇÄĸöÏóÏ޵Ľǣº
£¨1£©$\frac{23¦Ð}{6}$£»
£¨2£©-1500¡ã£»
£¨3£©-$\frac{18¦Ð}{7}$£»
£¨4£©672¡ã3¡ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¡÷ABCÈý¸öÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬cÇÒa£¬b£¬c³ÉµÈ²îÊýÁУ®
£¨1£©ÇóBµÄÈ¡Öµ·¶Î§£»
£¨2£©Èôb=2£¬Çó2acos2$\frac{C}{2}$+2ccos2$\frac{A}{2}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸