精英家教网 > 高中数学 > 题目详情
5.某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图示),在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (1)根据15000人,其中男生10500人,女生4500人,可得应收集多少位女生的样本数据;
(2)写出2×2列联表,求出K2,与临界值比较,即可得出结论.

解答 解:(1)300×$\frac{4500}{15000}$=90,所以应收集90位女生的样本数据.------------------(4分)
(2)300位学生中有300×0.75=225(位)的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:

男生女生总计
每周平均体育运动时间不超过4小时453075
 每周平均体育运动时间超过4小时16560225
总计21090300
-------(8分)
结合列联表可算得K2=$\frac{300×(45×60-165×30)^{2}}{210×90×75×225}$≈4.762>3.841,(10分)
所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.---(12分)

点评 本题主要考查独立性检验等基础知识,考查数形结合能力、运算求解能力以及应用用意识,考查必然与或然思想等,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.“x>0”是“x2>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x-alnx,$g(x)=-\frac{1+a}{x}$(a∈R).
(1)若a=1,求函数f(x)在(2,f(2))处的切线方程;
(2)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(3)若在[1,e](e=2.718…)上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\frac{1}{\sqrt{a{x}^{2}-4ax+3}}$的值域为(0,+∞)则a的取值范围是(  )
A.(0,$\frac{3}{4}$)B.[0,$\frac{3}{4}$)C.[$\frac{3}{4}$,+∞)D.[$\frac{3}{4}$,+∞)∪(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简计算
$(1){\;}_{\;}4{a^{\frac{2}{3}}}{b^{-\frac{1}{3}}}÷(-\frac{2}{3}{a^{-\frac{1}{3}}}{b^{-\frac{1}{3}}})$
$(2){\;}_{\;}{(\frac{2}{3})^{-2}}+{(1-\sqrt{2})^0}-{(3\frac{3}{8})^{\frac{2}{3}}}+\sqrt{{{(3-π)}^2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x∈N+|$\frac{4}{x-4}$∈Z},则集合A中元素的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下面给出四个论断:①{0}是空集;②若a∈N,则-a∉N;③集合A={x∈R|x2-2x+1=0}有两个元素;④集合$B=\{x∈Q|\frac{6}{x}∈N\}$是有限集.其中正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知全集U=R,集合$A=\left\{{\left.x\right|}\right.y=\sqrt{-{x^2}+4x-3}\left.{\;}\right\}$,$B=\left\{{\left.y\right|}\right.y=\sqrt{-{x^2}+4x-3}\left.{\;}\right\}$,
(1)分别求:∁R(A∩B),(∁RB)∪A;
(2)已知C={x|a<x<a+3},若B⊆C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=2x+$\frac{1}{x}$-1(x<0),则f(x)(  )
A.有最小值$2\sqrt{2}-1$B.有最小值$-(2\sqrt{2}+1)$C.有最大值$2\sqrt{2}-1$D.有最大值$-(2\sqrt{2}+1)$

查看答案和解析>>

同步练习册答案