【题目】已知椭圆及以下3个函数:①;②;③,其中函数图象能等分该椭圆面积的函数个数有( )
A.0个B.1个C.2个D.3个
【答案】C
【解析】
由椭圆的几何性质可得椭圆的图像关于原点对称,因为函数,函数为奇函数,其图像关于原点对称,则①②满足题意, 对于函数在轴右侧时,,只有时,,即函数在轴右侧的图像显然不能等分椭圆在轴右侧的图像的面积,又函数为偶函数, 其图像关于轴对称,则函数在轴左侧的图像显然也不能等分椭圆在轴左侧的图像的面积,即函数的图像不能等分该椭圆面积,得解.
解:因为椭圆的图像关于原点对称,
对于①,函数为奇函数,其图像关于原点对称,即可知的图象能等分该椭圆面积;
对于②,函数为奇函数,其图像关于原点对称,即可知的图象能等分该椭圆面积;
对于③,对于函数在轴右侧时,,只有时,,即函数在轴右侧的图像(如图)显然不能等分椭圆在轴右侧的图像的面积,又函数为偶函数, 其图像关于轴对称,则函数在轴左侧的图像显然也不能等分椭圆在轴左侧的图像的面积,即函数的图像不能等分该椭圆面积,
即函数图象能等分该椭圆面积的函数个数有2个,
故选:C.
科目:高中数学 来源: 题型:
【题目】某手机企业为确定下一年度投入某种产品的研发费用,统计了近年投入的年研发费用千万元与年销售量千万件的数据,得到散点图1,对数据作出如下处理:令,,得到相关统计量的值如图2:
(1)利用散点图判断和哪一个更适合作为年研发费用和年销售量的回归类型(不必说明理由),并根据数据,求出与的回归方程;
(2)已知企业年利润千万元与的关系式为(其中为自然对数的底数),根据(1)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司的新能源产品上市后在国内外同时销售,已知第一批产品上市销售40天内全部售完,该公司对这批产品上市后的国内外市场销售情况进行了跟踪调查,如图所示,其中图①中的折线表示的是国外市场的日销售量与上市时间的关系;图②中的抛物线表示的是国内市场的日销售量与上市时间的关系;下表表示的是产品广告费用、产品成本、产品销售价格与上市时间的关系.
图① 图②
第t天产品广告费用(单位:万元) | 每件产品成本(单位:万元) | 每件产品销售价格(单位:万元) | |
3 | 6 | ||
10 | 3 | 5 |
(1)分别写出国外市场的日销售量、国内市场的日销售量与产品上市时间t的函数关系式;
(2)产品上市后的哪几天,这家公司的日销售利润超过260万元?
(日销售利润=(单件产品销售价-单件产品成本)×日销售量-当天广告费用,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过市场调查,某种商品在销售中有如下关系:第x()天的销售价格(单位:元/件)为,第x天的销售量(单位:件)为(为常数),且在第20天该商品的销售收入为600元(销售收入=销售价格×销售量).
(1)求a的值,并求第15天该商品的销售收入;
(2)求在这30天中,该商品日销售收入y的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,部分对应值如下表.
x | 0 | 4 | 5 | |
1 | 2 | 2 | 1 |
的导函数的图象如图所示:下列关于的命题:
函数是周期函数;
函数在是减函数;
如果当时,的最大值是2,那么t的最大值为4;
函数的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.
(1)求证:平面PAC⊥平面BDE;
(2)若二面角E-BD-C为30°,求四棱锥P-ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】暑假期间,某旅行社为吸引游客去某风景区旅游,推出如下收费标准:若旅行团人数不超过30,则每位游客需交费用600元;若旅行团人数超过30,则游客每多1人,每人交费额减少10元,直到达到70人为止.
(1)写出旅行团每人需交费用(单位:元)与旅行团人数之间的函数关系式;
(2)旅行团人数为多少时,旅行社可以从该旅行团获得最大收入?最大收入是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为万元,且.
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入﹣年总成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线过点,且与轴、轴都交于正半轴,当直线与坐标轴围成的三角形面积取得最小值时,求:
(1)直线的方程;
(2)直线l关于直线m:y=2x-1对称的直线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com