精英家教网 > 高中数学 > 题目详情
19.写出一个以椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1和双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的离心率为根的方程x2-$\frac{5}{2}$x+1=0.

分析 求出椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1和双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的离心率.利用韦达定理,可得结论.

解答 解:椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的离心率为$\frac{1}{2}$,双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的离心率为2,
∴2+$\frac{1}{2}$=$\frac{5}{2}$,2×$\frac{1}{2}$=1,
∴以椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1和双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的离心率为根的方程为x2-$\frac{5}{2}$x+1=0.
故答案为:x2-$\frac{5}{2}$x+1=0.

点评 本题以椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1和双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的离心率为载体,考查一元二次方程,考查学生的计算能力,正确求出椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1和双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的离心率是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.一个水平放置的平面图形的斜二测直观图是直角梯形ABCD,如图所示,∠ABC=45°,$AB=AD=\sqrt{2}$,DC⊥BC,这个平面图形的面积为$4+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线y=k(x-3)与双曲线$\frac{x^2}{9}-\frac{y^2}{4}=1$只有一个公共点,则k的值有(  )
A.3个B.2个C.1个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=|sinx|+|cosx|,则下列结论中错误的是(  )
A.f(x)是周期函数B.f(x)的对称轴方程为x=$\frac{kπ}{4}$,k∈Z
C.f(x)在区间($\frac{π}{4}$,$\frac{3π}{4}$)上为增函数D.方程f(x)=$\frac{6}{5}$在区间[-$\frac{3}{2}$π,0]上有6个根

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设AB为过椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)右焦点F任意一条弦,若M点在x轴上且直线MF为∠AMB的平分线,则称M为该椭圆的“右分点”.
(1)若椭圆E的离心率为$\frac{1}{2}$,右焦点到右准线的距离为3,求:
①椭圆E的方程;
②“右分点”M的坐标;
(2)猜想椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)“右分点”M的位置,并证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若sin2x>cos2x,则x的取值范围是(kπ+$\frac{π}{4}$,$\frac{3π}{4}$+kπ)(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\frac{\sqrt{4-x}}{x+2}$的定义域为{x|x≤4且x≠-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线C:$\frac{{x}^{2}}{4}-{y}^{2}$=1,P为C上的任意点.
(1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;
(2)设F1,F2分别为双曲线C的两个焦点,若∠F1PF2为钝角,求点P的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,矩形ABCD所在的平面垂直圆O所在的平面,AB是圆O的直径,M是CD上一点,且DM=EF,E、F是圆O上的点,∠EAF=∠FAB=30°.
(1)求证:DF⊥BF;
(2)求证:平面DAE∥平面MOF.

查看答案和解析>>

同步练习册答案