若任意则就称是“和谐”集合。则在集合 的所有非空子集中,“和谐”集合的概率是 .
解析试题分析:本题是一个新定义的题,可以先求出集合的所有子集的个数,再求出其中“和谐”集合的个数,从而解出“和谐”集合的概率,选出正确选项。解:由题意知集合的非空子集有28-1=255个,由定义任意x∈A,则就称A是“和谐”集合,知此类集合中的元素两两成对,互为倒数,观察集合M,互为倒数的数有两对,包括两个倒数是自身的数1与-1,可将这些数看作是四个元素,由于包括四个元素的集合的非空子集是24-1=15,故“和谐”集合的概率是故答案为
考点:等可能事件的概率
点评:本题考查等可能事件的概率,解题的关键是理解所给的定义及集合的子集的个数计算方法,求出集合的子集的个数与和谐集合的个数,由概率公式求出概率,本题考查了理解能力及推理判断的能力
科目:高中数学 来源: 题型:填空题
设是的两个非空子集,如果存在一个从到的函数满足;
(i);(ii)对任意,当时,恒有.
那么称这两个集合“保序同构”.现给出以下3对集合:
①;
②;
③.
其中,“保序同构”的集合对的序号是____________(写出所有“保序同构”的集合对的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com