精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\frac{6}{x}$-log3x,在下列区间中,包含 f(x)零点的区间是(  )
A.(0,1)B.(3,9)C.(1,3)D.(9,+∞)

分析 判断函数的单调性,求出f(3),f(9)函数值的符号,利用零点判定定理判断即可.

解答 解:函数f(x)=$\frac{6}{x}$-log3x,是减函数,又f(3)=2-log33=1>0,
f(9)=$\frac{2}{3}$-log39=-$\frac{4}{3}$<0,
可得f(3)f(9)<0,由零点判定定理可知:函数f(x)=$\frac{6}{x}$-log3x,包含零点的区间是:(3,9).
故选:B.

点评 本题考查函数的零点判定定理的应用,考查计算能力,注意好的单调性的判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.给出下列不等式:1+$\frac{1}{2}$+$\frac{1}{3}$>1,1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{7}$>$\frac{3}{2}$,1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{15}$>2…,则按此规律可猜想第n个不等式为1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n+1}-1}$>$\frac{n+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数$\frac{i^3}{{{{(1+i)}^2}}}$=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{i}{2}$D.$\frac{i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知首项为正的数列{an}中,相邻两项不为相反数,且前n项和${S_n}=\frac{1}{4}({a_n}-5)({a_n}+7)$
(1)求证:数列{an}为等差数列;
(2)设数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和为Tn,对一切正整数n都有Tn≥M成立,求M的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$f(x)=a+\frac{2}{{{3^x}+1}}$,a是实常数,
(1)当a=1时,写出函数f(x)的值域;
(2)判断并证明f(x)的单调性;
(3)若f(x)是奇函数,不等式f(f(x))+f(m)<0有解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}的前n项和为Sn,若m>1,且am-1+am+1-am2=0,S2m-1=38则m等于(  )
A.38B.20C.10D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题“若a<b,则a-1≤b”的逆否命题为(  )
A.若a-1≥b,则a>bB.若a-1≤b,则a≥bC.若a-1>b,则a>bD.若a-1>b,则a≥b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$(m≠0),则tanθ=-$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC中,∠ACB=90°,SA⊥平面ABC,AD⊥SC.求证:
(1)BC⊥平面SAC;
(2)AD⊥平面SBC.

查看答案和解析>>

同步练习册答案