精英家教网 > 高中数学 > 题目详情

已知F是椭圆(a>b>0)的左焦点, P是椭圆上的一点, PF⊥x轴, O

∥AB(O为原点), 则该椭圆的离心率是 (        )

 

A.       B.       C.         D.

 

【答案】

A

【解析】解:把x=c代入椭圆方程求得y=±∴|PF|=

∵OP∥AB,PF∥OB∴△PFO∽△ABO

求得b=c∴a=

故选A

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,点P是x轴上方椭圆E上的一点,且PF1⊥F1F2|PF1|=
3
2
|PF2|=
5
2

(Ⅰ) 求椭圆E的方程和P点的坐标;
(Ⅱ)判断以PF2为直径的圆与以椭圆E的长轴为直径的圆的位置关系;
(Ⅲ)若点G是椭圆C:
x2
m2
+
y2
n2
=1(m>n>0)
上的任意一点,F是椭圆C的一个焦点,探究以GF为直径的圆与以椭圆C的长轴为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知F(c,0)是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点;⊙F:(x-c)2+y2=a2与x轴交于D,E两点,其中E是椭圆C的左焦点.
(1)求椭圆C的离心率;
(2)设⊙F与y轴的正半轴的交点为B,点A是点D关于y轴的对称点,试判断直线AB与⊙F的位置关系;
(3)设直线BF与⊙F交于另一点G,若△BGD的面积为4
3
,求椭圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源:0103 月考题 题型:单选题

已知AB是椭圆 的长轴,若把线段AB五等份,过每个分点作AB的垂线,分别与椭圆的上半部分相交于C、D、E、G 四点,设F是椭圆的左焦点,则|FC|+|FD|+|FE|+|FG|的值是
[     ]
A.15
B.16
C.18
D.20

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年湖北黄冈联考理)已知AB是椭圆=1的长轴,若把线段AB五等份,过每个分点作AB的垂线,分别与椭圆的上半部分相交于C、D、E、G四点,设F是椭圆的左焦点,则的值是(   )

A.15                   B.16                   C.18                   D.20

查看答案和解析>>

科目:高中数学 来源:江西省上高二中09-10学年高二第五次月考(理) 题型:选择题

 已知AB是椭圆=1的长轴,若把线段AB五等份,过每个分点作AB的垂线,分别与椭圆的上半部分相交于C、D、E、G四点,设F是椭圆的左焦点,则的值是()

A.15           B.16           C.18           D.20

 

查看答案和解析>>

同步练习册答案