精英家教网 > 高中数学 > 题目详情
2.已知过两点A(5,0)和$B({0,-\frac{5}{2}})$的直线l1与直线l2:x+2y+3=0相交于点M.
(Ⅰ)求以点M为圆心且过点B(4,-2)的圆的标准方程C;
(Ⅱ)求过点N(1,1)且与圆C相切的直线方程.

分析 (Ⅰ)求出点M的坐标,圆的半径,即可求出圆的标准方程C;
(Ⅱ)利用点到直线的距离公式,求出斜率,即可求过点N(1,1)且与圆C相切的直线方程.

解答 解:(Ⅰ)依题意,得直线l1的方程为 $\frac{x}{5}+\frac{y}{{-\frac{5}{2}}}=1$,即x-2y-5=0.(2分)
由$\left\{\begin{array}{l}x+2y+3=0\\ x-2y-5=0\end{array}\right.$,解得$\left\{\begin{array}{l}x=1\\ y=-2\end{array}\right.$,即点M的坐标为M(1,-2).(4分)
设圆C的半径为r,则r2=|BM|2=(4-1)2+(-2+2)2=9.(5分)
所以,圆C的标准方程为(x-1)2+(y+2)2=9.(6分)
(Ⅱ)设点N(1,1)且与圆C相切的直线方程的斜率为k,
则直线方程为kx-y+1-k=0.(7分)
由$\frac{{|{k+2+1-k}|}}{{\sqrt{{k^2}+1}}}=3$,得k=0.         (9分)
所以y=1是圆C的一条切线方程.(10分)
又∵点N(1,1)在圆C:(x-1)2+(y+2)2=9上,
∴圆C的切线方程只有一条,即y=1.(11分)

点评 本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在△ABC中,若sin2A=sinB•sinC且(b+c+a)(b+c-a)=3bc,则该三角形的形状是等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设复数${z_1}=\frac{{\sqrt{3}}}{2}+\frac{1}{2}i$,z2=3+4i,其中i为虚数单位,则$\frac{{|z_1^{2016}|}}{{|{z_2}|}}$=(  )
A.$\frac{2}{2015}$B.$\frac{1}{2016}$C.$\frac{1}{25}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x•lnx+ax,a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数y=f(x)在$[\frac{1}{e},e]$上的最小值;
(Ⅲ)若$g(x)=f(x)+\frac{1}{2}a{x^2}-(2a+1)x$,求证:a≥0是函数y=g(x)在x∈(1,2)时单调递增的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“?x∈R,sinx>0”的否定是(  )
A.?x∈R,sinx<0B.?x∈R,sinx≤0C.?x∈R,sinx≤0D.?x∈R,sinx<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知不等式(m-n)2+(m-lnn+λ)2≥2对任意m∈R,n∈(0,+∞)恒成立,则实数λ的取值范围为λ≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.集合A={0,2,4,6},B={x||x-1|≤2},则A∩B是(  )
A.{0,2}B.{2,4}C.{4,6}D.{0,2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知条件p:x>1,条件q:x>0,则p是q的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既非充分也非必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线l过点A(-1,0)且与⊙B:x2+y2-2x=0相切于点D,以坐标轴为对称轴的双曲线E过点D,一条渐进线平行于l,则E的方程为(  )
A.$\frac{3{y}^{2}}{4}$-$\frac{{x}^{2}}{4}$=1B.$\frac{{x}^{2}}{2}$-$\frac{3{y}^{2}}{2}$=1C.$\frac{5{y}^{2}}{3}$-x2=1D.$\frac{3{y}^{2}}{2}$-$\frac{{x}^{2}}{2}$=1

查看答案和解析>>

同步练习册答案