精英家教网 > 高中数学 > 题目详情

【题目】为了解某地参加2015 年夏令营的名学生的身体健康情况,将学生编号为,采用系统抽样的方法抽取一个容量为的样本,且抽到的最小号码为,已知这名学生分住在三个营区,从在第一营区,从在第二营区,从在第三营区,则第一、第二、第三营区被抽中的人数分别为(

A. B.

C. D.

【答案】B

【解析】

试题分析:依题意可知,在随机抽样中,首次抽到005号,以后每隔10个号抽到一个人,

抽取的号码构成以5为首项,d=10为公差的等差数列.

an=10n-5.

由10n-5155解得n16,即第一营区抽中的人数为16人.

由156<10n-5255,即n=17,18,26,共有26-17+1=10人,即第二营区抽中的人数为10人.

则第三营区的人数为40-16-10=14人

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,侧棱底面的中点.

)求直线所成角的余弦值;

)在侧面内找一点,使,求N点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与抛物线的焦点重合,点

)求 的方程;

)直线不过原点O且不平行于坐标轴,有两个交点,线段的中点为,证明:的斜率与直线的斜率的乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日12月5日的每天昼夜温度与实验每天每100颗种子中的发芽数,得到如下数据:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

温差

10

11

13

12

8

发芽

23

25

30

26

16

农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验

选取的2组数据恰好是不相邻的2天数据的概率;

若选取的是12月112月5日的两组数据,请根据12月2日12月4日的数据,求线性回归方程

线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问所得的线性回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1求曲线在点处的切线方程;

2求函数的单调区间及极值;

3成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

(I)求直方图中的值;

(II)求月平均用电量的众数和中位数;

(III)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列是首项为0的递增数列,,满足:对于任意的总有两个不同的根,则的通项公式为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为已知

I)设,证明数列是等比数列;

II)求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为方便市民休闲观光,市政府计划在半径为200,圆心角为的扇形广场内(如图所示),沿边界修建观光道路,其中分别在线段上,且两点间距离为定长.

1)当时,求观光道段的长度;

2)为提高观光效果,应尽量增加观光道路总长度,试确定图中两点的位置,使观光道路总长度达到最长?并求出总长度的最大值.

查看答案和解析>>

同步练习册答案