精英家教网 > 高中数学 > 题目详情
6.在等比数列{an}(n∈N*)中,a1>1,公比q>0,设bn=log2an.且b1+b2+b3=6,b1b3b5=0.
(1)求{an}的通项an
(2)若cn=$\frac{1}{n({b}_{n}-6)}$,求{cn}的前n项和Sn

分析 (1)由等比数列的通项公式,结合bn=log2an化简b1•b3•b5=0得a5=1且b5=0,代入b1+b3+b5=6得log2a1a3=6,由此算出a2=8,解出公比q,即可得出{an}、{bn}的通项公式;
(2)运用对数的运算性质可得bn,求得cn=$\frac{1}{n({b}_{n}-6)}$=-$\frac{1}{n(n+1)}$=-($\frac{1}{n}$-$\frac{1}{n+1}$),运用数列的求和方法:裂项相消求和,即可得到所求.

解答 解:(1)依题意,an=a1qn-1
∵a1>1,q>0,∴数列{an}是单调数列,
∵b1+b3+b5=log2a33=6,
∴a33=26,得a3=4,
又∵bn=log2an,b1•b3•b5=0及a1>1,
∴b5=0,可得a5=1.
因此a3q2=1,即q2=$\frac{1}{4}$,
解之得q=$\frac{1}{2}$(舍负).
∴an=a5qn-5=25-n
(2)bn=log2an=5-n,
cn=$\frac{1}{n({b}_{n}-6)}$=-$\frac{1}{n(n+1)}$=-($\frac{1}{n}$-$\frac{1}{n+1}$),
前n项和Sn=-(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=-(1-$\frac{1}{n+1}$)=-$\frac{n}{n+1}$.

点评 本题考查了等比数列的通项公式、对数的定义与运算性质和数列的求和方法:裂项相消求和等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.过点P(-3,2$\sqrt{7}$)和Q(-6$\sqrt{2}$,-7),且焦点在y轴上的双曲线的标准方程是$\frac{{y}^{2}}{25}-\frac{{x}^{2}}{75}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平行四边形ABCD中,AB=4$\sqrt{7}$,BC=4,点P在CD上,AC交BP于点Q,若$\overrightarrow{CP}$=3$\overrightarrow{PD}$,$\overrightarrow{AP}•\overrightarrow{BP}$=-12.则$\overrightarrow{AB}•\overrightarrow{AQ}$=(  )
A.66B.68C.72D.76

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数y=$\frac{x+3a-1}{x+1}$在区间(-1,+∞)上单调递增,则a的取值范围是a<$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.三角形ABC中,sinA=$\frac{12}{13}$,cosB=$\frac{4}{5}$,则cosC=$\frac{56}{65}$或$\frac{16}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sinα=-$\frac{3\sqrt{10}}{10}$,且α是第三象限角,求tan(α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知非零向量$\overrightarrow{a},\overrightarrow{b}$不共线.若$\overrightarrow{AB}=\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{AC}=2\overrightarrow{a}+8\overrightarrow{b}$,$\overrightarrow{AD}=3\overrightarrow{a}-3\overrightarrow{b}$,求证:A,B,C,D四点共面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=$\left\{\begin{array}{l}{1(n=0)}\\{f[g(n-1)](n≥1)}\end{array}\right.$.
(1)若an=g(n)-g(n-1)(n∈N*),求证:{an}为等比数列;
(2)设Sn=a1+a2+a3+…+an,求Sn(用n,b表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an},且an=$\frac{1}{{{n^2}+n}}$,则数列{an}前100项的和等于(  )
A.$\frac{100}{101}$B.$\frac{99}{100}$C.$\frac{101}{102}$D.$\frac{99}{101}$

查看答案和解析>>

同步练习册答案