【题目】近年来,共享单车在我国各城市迅猛发展,为人们的出行提供了便利,但也给城市的交通管理带来了一些困难,为掌握共享单车在省的发展情况,某调查机构从该省抽取了5个城市,并统计了共享单车的指标和指标,数据如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指标 | 2 | 4 | 5 | 6 | 8 |
指标 | 3 | 4 | 4 | 4 | 5 |
(1)试求与间的相关系数,并说明与是否具有较强的线性相关关系(若,则认为与具有较强的线性相关关系,否则认为没有较强的线性相关关系).
(2)建立关于的回归方程,并预测当指标为7时,指标的估计值.
(3)若某城市的共享单车指标在区间的右侧,则认为该城市共享单车数量过多,对城市的交通管理有较大的影响交通管理部门将进行治理,直至指标在区间内现已知省某城市共享单车的指标为13,则该城市的交通管理部门是否需要进行治理?试说明理由.
参考公式:回归直线中斜率和截距的最小二乘估计分别为
,,相关系数
参考数据:,,.
科目:高中数学 来源: 题型:
【题目】将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直角坐标系中,圆的方程为,,,为圆上三个定点,某同学从点开始,用掷骰子的方法移动棋子.规定:①每掷一次骰子,把一枚棋子从一个定点沿圆弧移动到相邻下一个定点;②棋子移动的方向由掷骰子决定,若掷出骰子的点数为偶数,则按图中箭头方向移动;若掷出骰子的点数为奇数,则按图中箭头相反的方向移动.设掷骰子次时,棋子移动到,,处的概率分别为,,.例如:掷骰子一次时,棋子移动到,,处的概率分别为,,.
(1)分别掷骰子二次,三次时,求棋子分别移动到,,处的概率;
(2)掷骰子次时,若以轴非负半轴为始边,以射线,,为终边的角的余弦值记为随机变量,求的分布列和数学期望;
(3)记,,,其中.证明:数列是等比数列,并求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着移动支付的普及,中国人的生活方式正在悄然发生改变,带智能手机而不带钱包出门渐渐成为中国人的新习惯.在调查“现金支付,银联卡支付,手机支付”三种支付方式中“最常用的支付方式”这个问题时,在中国某地,从20岁到40岁人群中随机抽取55人,从40岁到60岁人群随机抽取45人,进行答题.20岁到40岁人群的支付情况是选择现金支付的占、银联卡支付的占、手机支付的占.40岁到60岁人群的支付情况是:现金支付的占、银联卡支付的占、手机支付的占.
(1)请根据以上调查结果将下面列联表补充完整;并判断至多有多少把握认为支付方式与年龄有关;
手机支付 | 其他支付方式 | 合计 | |
20岁到40岁 | |||
40岁到60岁 | |||
合计 |
(2)商家为了鼓励使用手机支付规定手机支付打9折,其他支付方式不打折.现有一物品售价100元,以样本中支付方式的频率估计一件产品支付方式的概率,假设购买每件物品的支付方式相互独立.求4件此种物品销售额的数学期望.
附:,其中.
0.40 | 0.25 | 0.15 | 0.10 | 0.050 | 0.025 | 0.01 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.636 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,焦点在轴上,左顶点为,左焦点为,点在椭圆上,直线与椭圆交于, 两点,直线, 分别与轴交于点, .
(Ⅰ)求椭圆的方程;
(Ⅱ)以为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线与曲线交于点,将射线绕极点逆时针方向旋转交曲线于点.
(1)求曲线的参数方程;
(2)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xy中,曲线C的参数方程为为参数),在以为极点,轴的非负半轴为极轴的极坐标系中,直线的极坐标方程为。
(1)求曲线C的极坐标方程;
(2)设直线与曲线C相交于A,B两点,P为曲C上的一动点,求△PAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数的不足近似值和过剩近似值分别为和,则是的更为精确的不足近似值或过剩近似值.我们知道,若令,则第一次用“调日法”后得是的更为精确的过剩近似值,即,若每次都取最简分数,那么第四次用“调日法”后可得的近似分数为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com